43 resultados para MIDBRAIN DOPAMINE NEURONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diethylpropion (DEP) is an amphetamine-like agent used as an anorectic drug. Abuse of DEP has been reported and some restrictions of its use have been recently imposed. The conditioning place preference (CPP) paradigm was used to evaluate the reinforcing properties of DEP in adult male Wistar rats. After initial preferences were determined, animals weighing 250-300 g (N = 7 per group) were conditioned with DEP (10, 15 or 20 mg/kg). Only the dose of 15 mg/kg produced a significant place preference (358 ± 39 vs 565 ± 48 s). Pretreatment with the D1 antagonist SCH 23390 (0.05 mg/kg, sc) 10 min before DEP (15 mg/kg, ip) blocked DEP-induced CPP (418 ± 37 vs 389 ± 31 s) while haloperidol (0.5 mg/kg, ip), a D2 antagonist, 15 min before DEP was ineffective in modifying place conditioning produced by DEP (385 ± 36 vs 536 ± 41 s). These results suggest that dopamine D1 receptors mediate the reinforcing effect of DEP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP) = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs) have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h) is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leech neurons in culture have provided novel insights into the steps in the formation of neurite outgrowth patterns, target recognition and synapse formation. Identified adult neurons from the central nervous system of the leech can be removed individually and plated in culture under well-controlled conditions, where they retain their characteristic physiological properties, grow neurites and form specific chemical or electrical synapses. Different identified neurons develop distinctive outgrowth patterns that depend on their identities and on the molecular composition of the substrate. On native substrates, the patterns displayed by these neurons reproduce characteristics from the adult or the developing neurons. In addition, the substrate may induce selective directed growth between pairs of neurons that normally make contact in the ganglion. Upon contact, pairs of cultured leech neurons form chemical or electrical synapses, or both types depending on the neuronal identities. Anterograde and retrograde signals during membrane contact and synapse formation modify the distribution of synaptic terminals, calcium currents, and responses to 5-hydroxytryptamine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of axonal regeneration, after sciatic nerve lesion in adult C57BL/6J mice, is reduced when compared to other isogenic strains. It was observed that such low regeneration was not due just to a delay, since neuronal death was observed. Two general mechanisms of cell death, apoptosis and necrosis, may be involved. By using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technique, we demonstrated that a large number of sensory neurons, as well as satellite cells found in the dorsal root ganglia, were intensely labeled, thus indicating that apoptotic mechanisms were involved in the death process. Although almost no labeled neurons or satellite cells were observed one week after transection, a more than ten-fold increase in TUNEL labeling was detected after two weeks. The results obtained with the C57BL/6J strain were compared with those of the A/J strain, which has a much higher peripheral nerve regeneration potential. In A/J mice, almost no labeling of sensory neurons or satellite cells was observed after one or two weeks, indicating the absence of neuronal loss. Our data confirm previous observations that approximately 40% of C57BL/6J sensory neurons die after sciatic nerve transection, and indicate that apoptotic events are involved. Also, our observations reinforce the hypothesis that the low rate of axonal regeneration occurring in C57BL/6J mice may be the result of a mismatch in the timing of the neurons need for neurotrophic substances, and production of the latter by non-neuronal cells in the distal stump.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the nervous system is guided by a balanced action between intrinsic factors represented by the genetic program and epigenetic factors characterized by cell-cell interactions which neural cells might perform throughout nervous system morphogenesis. Highly relevant among them are neuron-glia interactions. Several soluble factors secreted by either glial or neuronal cells have been implicated in the mutual influence these cells exert on each other. In this review, we will focus our attention on recent advances in the understanding of the role of glial and neuronal trophic factors in nervous system development. We will argue that the functional architecture of the brain depends on an intimate neuron-glia partnership.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons from the anterior subventricular zone (SVZ) of the cerebral cortex migrate tangentially to become interneurons in the olfactory bulb during development and in adult rodents. This migration was defined as neuronophilic, independent of a radial glial substrate. The cortical SVZ and the rostral migratory stream to the olfactory bulb were shown to be rich in 9-O-acetyl GD3 gangliosides (9-O-acGD3), which have been previously shown to be implicated in gliophilic migration in the rodent cerebral cortex and cerebellum. In the present study, we performed SVZ explant cultures using rats during their first postnatal week to analyze the expression of these gangliosides in chain migration of neuronal precursors. We characterized migrating chains of these neuroblasts through morphological analysis and immunocytochemistry for the neural cell adhesion molecule. By using the Jones monoclonal antibody which binds specifically to 9-O-acGD3 we showed that migrating chains from the SVZ explants express 9-O-acGD3 which is distributed in a punctate manner in individual cells. 9-O-acGD3 is also present in migrating chains that form in the absence of radial glia, typical of the neuronophilic chain migration of the SVZ. Our data indicate that 9-O-acetylated gangliosides may participate in neuronophilic as well as gliophilic migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the behavioral correlates of the activity of serotonergic and non-serotonergic neurons in the nucleus raphe pallidus (NRP) and nucleus raphe obscurus (NRO) of unanesthetized and unrestrained cats. The animals were implanted with electrodes for recording single unit activity, parietal oscillographic activity, and splenius, digastric and masseter electromyographic activities. They were tested along the waking-sleep cycle, during sensory stimulation and during drinking behavior. The discharge of the serotonergic neurons decreased progressively from quiet waking to slow wave sleep and to fast wave sleep. Ten different patterns of relative discharge across the three states were observed for the non-serotonergic neurons. Several non-serotonergic neurons showed cyclic discharge fluctuations related to respiration during one, two or all three states. While serotonergic neurons were usually unresponsive to the sensory stimuli used, many non-serotonergic neurons responded to these stimuli. Several non-serotonergic neurons showed a phasic relationship with splenius muscle activity during auditory stimulation. One serotonergic neuron showed a tonic relationship with digastric muscle activity during drinking behavior. A few non-serotonergic neurons exhibited a tonic relationship with digastric and/or masseter muscle activity during this behavior. Many non-serotonergic neurons exhibited a phasic relationship with these muscle activities, also during this behavior. These results suggest that the serotonergic neurons in the NRP and NRO constitute a relatively homogeneous population from a functional point of view, while the non-serotonergic neurons form groups with considerable functional specificity. The data support the idea that the NRP and NRO are implicated in the control of somatic motor output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neonatal handling has long-lasting effects on behavior and stress reactivity. The purpose of the present study was to investigate the effect of neonatal handling on the number of dopaminergic neurons in the hypothalamic nuclei of adult male rats as part of a series of studies that could explain the long-lasting effects of neonatal stimulation. Two groups of Wistar rats were studied: nonhandled (pups were left undisturbed, control) and handled (pups were handled for 1 min once a day during the first 10 days of life). At 75-80 days, the males were anesthetized and the brains were processed for immunohistochemistry. An anti-tyrosine hydroxylase antibody and the avidin-biotin-peroxidase method were used. Tyrosine hydroxylase-immunoreactive (TH-IR) neurons were counted bilaterally in the arcuate, paraventricular and periventricular nuclei of the hypothalamus in 30-µm sections at 120-µm intervals. Neonatal handling did not change the number of TH-IR neurons in the arcuate (1021 ± 206, N = 6; 1020 ± 150, N = 6; nonhandled and handled, respectively), paraventricular (584 ± 85, N = 8; 682 ± 62, N = 9) or periventricular (743 ± 118, N = 7; 990 ± 158, N = 7) nuclei of the hypothalamus. The absence of an effect on the number of dopaminergic cells in the hypothalamus indicates that the reduction in the amount of neurons induced by neonatal handling, as shown by other studies, is not a general phenomenon in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons of the mammalian cerebral cortex comprise two broad classes: pyramidal neurons, which project to distant targets, and the inhibitory nonpyramidal cells, the cortical interneurons. Pyramidal neurons are generated in the germinal ventricular zone, which lines the lateral ventricles, and migrate along the processes of radial glial cells to their positions in the developing cortex in an `inside-out' sequence. The GABA-containing nonpyramidal cells originate for the most part in the ganglionic eminence, the primordium of the basal ganglia in the ventral telencephalon. These cells follow tangential migratory routes to enter the cortex and are in close association with the corticofugal axonal system. Once they enter the cortex, they move towards the ventricular zone, possibly to obtain positional information, before they migrate radially in the direction of the pial surface to take up their positions in the developing cortex. The mechanisms that guide interneurons throughout these long and complex migratory routes are currently under investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effects of high concentrations of KCl in releasing noradrenaline from sympathetic nerves and its actions on postsynaptic alpha-adrenoceptors. We measured the isotonic contractions induced by KCl in the isolated rat anococcygeus muscle under different experimental conditions. The contractile responses induced by KCl were inhibited by alpha-adrenoceptor antagonists in 2.5 mM Ca2+ solution. Prazosin reduced the maximum effect from 100 to 53.9 ± 10.2% (P<0.05) while the pD2 values were not changed. The contractile responses induced by KCl were abolished by prazosin in Ca2+-free solution (P<0.05). Treatment of the rats with reserpine reduced the maximum effect induced by KCl as compared to the contractile responses induced by acetylcholine from 339.5 ± 157.8 to 167.3 ± 65.5% (P<0.05), and increased the pD2 from 1.57 ± 0.01 to 1.65 ± 0.006 (P<0.05), but abolished the inhibitory effect of prazosin (P<0.05). In contrast, L-NAME increased the contractile responses induced by 120 mM KCl by 6.2 ± 2.3% (P<0.05), indicating that KCl could stimulate the neurons that release nitric oxide, an inhibitory component of the contractile response induced by KCl. Our results indicate that high concentrations of KCl induce the release of noradrenaline from noradrenergic neurons, which interacts with alpha1-adrenoceptors in smooth muscle cells, producing a contractile response in 2.5 mM Ca2+ (100%) and in Ca2+-free solution, part of which is due to a direct effect of KCl on the rat anococcygeus muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glutamate-sensitive inward current (Iglu) is described in rat cerebellar granule neurons and related to a glutamate transport mechanism. We examined the features of Iglu using the patch-clamp technique. In steady-state conditions the Iglu measured 8.14 ± 1.9 pA. Iglu was identified as a voltage-dependent inward current showing a strong rectification at positive potentials. L-Glutamate activated the inward current in a dose-dependent manner, with a half-maximal effect at about 18 µM and a maximum increase of 51.2 ± 4.4%. The inward current was blocked by the presence of dihydrokainate (0.5 mM), shown by others to readily block the GLT1 isoform. We thus speculate that Iglu could be attributed to the presence of a native glutamate transporter in cerebellar granule neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that insulin may influence many brain functions. It is known that intracerebroventricular (icv) injection of nondiabetogenic doses of streptozotocin (STZ) can damage insulin receptor signal transduction. In the present study, we examined the functional damage to the brain insulin receptors on central mechanisms regulating glomerular filtration rate and urinary sodium excretion, over four periods of 30 min, in response to 3 µl insulin or 0.15 NaCl (vehicle) injected icv in STZ-treated freely moving Wistar-Hannover rats (250-300 g). The icv cannula site was visually confirmed by 2% Evans blue infusion. Centrally administered insulin (42.0 ng/µl) increased the urinary output of sodium (from 855.6 ± 85.1 to 2055 ± 310.6 delta%/min; N = 11) and potassium (from 460.4 ± 100 to 669 ± 60.8 delta%/min; N = 11). The urinary sodium excretion response to icv insulin microinjection was markedly attenuated by previous central STZ (100 µg/3 µl) administration (from 628 ± 45.8 to 617 ± 87.6 delta%/min; N = 5) or by icv injection of a dopamine antagonist, haloperidol (4 µg/3 µl) (from 498 ± 39.4 to 517 ± 73.2 delta%/min; N = 5). Additionally, insulin-induced natriuresis occurred by increased post-proximal tubule sodium rejection, despite an unchanged glomerular filtration rate. Excluding the possibility of a direct action of STZ on central insulin receptor-carrying neurons, the current data suggest that the insulin-sensitive response may be processed through dopaminergic D1 receptors containing neuronal pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Edinger-Westphal nucleus (EWN) is a central preganglionic parasympathetic cell group that gives rise to cholinergic input to the ciliary ganglion, thereby regulating several neurovegetative ocular functions. Recently, the supposed presence of the neuropeptide urocortin (UCN) has been reported in EWN neurons in rodent brain. The purpose of the present study was to examine the distribution of UCN in avian brain and to investigate by immunohistochemical analysis the possible use of this substance as an EWN marker in a non-mammalian class of vertebrates. Brain tissue of pigeons was incubated with a specific antibody against UCN and the results showed labeling of many small neurons, forming a double wing in the dorsal mesodiencephalic transition area. Their size and shape, however, differed from those of EWN neurons, and they were preferentially located rostral to the EWN. Double-label experiments employing an antibody against the enzyme choline acetyltransferase (ChAT) showed that UCN is not localized to the cholinergic cells of the EWN and confirmed the rostral distributionof UCN never overlapping the ChAT+ EWN cells. Taken together, these results suggest that, at least in pigeons, the UCN+ population does not belong to the traditionally defined EWN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson's disease, a major neurodegenerative disorder in humans whose etiology is unknown, may be associated with some environmental factors. Nocardia otitidiscaviarum (GAM-5) isolated from a patient with an actinomycetoma produced signs similar to Parkinson's disease following iv injection into NMRI mice. NMRI mice were infected intravenously with a non-lethal dose of 5 x 10(6) colony forming units of N. otitidiscaviarum (GAM-5). Fourteen days after bacterial infection, most of the 60 mice injected exhibited parkinsonian features characterized by vertical head tremor, akinesia/bradykinesia, flexed posture and postural instability. There was a peak of nocardial growth in the brain during the first 24 h followed by a decrease, so that by 14 days nocardiae could no longer be cultured. At 24 h after infection, Gram staining showed nocardiae in neurons in the substantia nigra and occasionally in the brain parenchyma in the frontal and parietal cortex. At 21 days post-infection, tyrosine hydroxylase immunolabeling showed a 58% reduction of tyrosine hydroxylase in the substantia nigra, and a 35% reduction of tyrosine hydroxylase in the ventral tegmental region. Dopamine levels were reduced from 110 ± 32.5 to 58 ± 16.5 ng/mg protein (47.2% reduction) in brain from infected mice exhibiting impaired movements, whereas serotonin levels were unchanged (191 ± 44 protein in control and 175 ± 39 ng/mg protein in injected mice). At later times, intraneuronal inclusion bodies were observed in the substantia nigra. Our observations emphasize the need for further studies of the potential association between Parkinson's disease or parkinsonism-like disease and exposure to various nocardial species.