446 resultados para MALARIA PARASITES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Avian malaria parasites (Plasmodium) have a worldwide distribution except for Antarctica. They are transmitted exclusively by mosquito vectors (Diptera: Culicidae) and are of particular interest to health care research due to their phylogenetic relationship with human plasmodia and their ability to cause avian malaria, which is frequently lethal in non-adapted avian hosts. However, different features of avian Plasmodium spp, including their taxonomy and aspects of their life-history traits, need to be examined in more detail. Over the last 10 years, ecologists, evolutionary biologists and wildlife researchers have recognized the importance of studying avian malaria parasites and other related haemosporidians, which are the largest group of the order Haemosporida by number of species. These studies have included understanding the ecological, behavioral and evolutionary aspects that arise in this wildlife host-parasite system. Molecular tools have provided new and exiting opportunities for such research. This review discusses several emerging topics related to the current research of avian Plasmodium spp and some related avian haemosporidians. We also summarize some important discoveries in this field and emphasize the value of using both polymerase chain reaction-based and microscopy-based methods in parallel for wildlife studies. We will focus on the genus Plasmodium, with an emphasis on the distribution and pathogenicity of these parasites in wild birds in Brazil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The production of fully functional human red cells in vitro from haematopoietic stem cells (hHSCs) has been successfully achieved. Recently, the use of hHSCs from cord blood represented a major improvement to develop the continuous culture system for Plasmodium vivax. Here, we demonstrated that CD34+hHSCs from peripheral blood and bone marrow can be expanded and differentiated to reticulocytes using a novel stromal cell. Moreover, these reticulocytes and mature red blood cells express surface markers for entrance of malaria parasites contain adult haemoglobin and are also permissive to invasion by P. vivax and Plasmodium falciparum parasites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host’s metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37ºC with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 µM - 75%), staurosporine (1 µM - 58%), R03 (1 µM - 75%), and tyrphostins B44 (100 µM - 66%) and B46 (100 µM - 68%). All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of common antigens between Plasmodium falciparum and Anopheles albimanus was demonstrated. Different groups of rabbits were immunized with: crude extract from female An. albimanus (EAaF), red blood cells infected with Plasmodium falciparum (EPfs), and the SPf66 synthetic malaria vaccine. The rabbit's polyclonal antibodies were evaluated by ELISA, Multiple Antigen Blot Assay (MABA), and immunoblotting. All extracts were immunogenic in rabbits according to these three techniques, when they were evaluated against the homologous antigens. Ten molecules were identified in female mosquitoes and also in P. falciparum antigens by the autologous sera. The electrophoretic pattern by SDS-PAGE was different for the three antigens evaluated. Cross-reactions between An. albimanus and P. falciparum were found by ELISA, MABA, and immunoblotting. Anti-P. falciparum and anti-SPf66 antibodies recognized ten and five components in the EAaF crude extract, respectively. Likewise, immune sera against female An. albimanus identified four molecules in the P. falciparum extract antigen. As far as we know, this is the first work that demonstrates shared antigens between anophelines and malaria parasites. This finding could be useful for diagnosis, vaccines, and the study of physiology of the immune response to malaria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUMMARYThe use of a “direct PCR” DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ) in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monocytes/macrophages play a critical role in the defense mechanisms against malaria parasites, and are the main cells responsible for the elimination of malaria parasites from the blood circulation. We carried out a microscope-aided evaluation of the stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes, by human monocytes. These cells were obtained from healthy adult individuals by means of centrifugation through a cushion of Percoll density medium and were incubated with erythrocytes infected with Plasmodium falciparum that had previously been incubated with a pool of anti-plasmodial immune serum. We described the stages of phagocytosis, starting from adherence of infected erythrocytes to the phagocyte membrane and ending with their destruction within the phagolisosomes of the monocytes. We observed that the different erythrocytic forms of the parasite were ingested by monocytes, and that the process of phagocytosis may be completed in around 30 minutes. Furthermore, we showed that phagocytosis may occur continuously, such that different phases of the process were observed in the same phagocyte.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hospital based studies were conducted to investigate the occurrence of Plasmodium/intestinal helminth co-infections among pregnant Nigerian women, and their effects on birthweights, anaemia and spleen size. From 2,104 near-term pregnant women examined, 816 (38.8%) were found to be infected with malaria parasites. Among the 816 parasitaemic subjects, 394 (48.3%) were also infected with intestinal helminths, 102 (12.5%) having mixed helminth infections. The prevalence of the helminth species found in stool samples of parasitaemic subjects examined was, Ascaris lumbricoides (19.1%), hookworm (14.2%), Trichuris trichiura (7%) Schistosoma mansoni (3.4%), Enterobius vermicularis (2%), Hymenolepis sp. (1.6%) and Taenia sp. (1%). Mothers with Plasmodium infection but without intestinal helminth infection had neonates of higher mean birthweights than those presenting both Plasmodium and intestinal helminth infections and this effect was more pronounced in primigravids. The mean haemoglobin values of malarial mothers with intestinal helminth infections were lower than those with Plasmodium infection but without intestinal helminth infections but these were not statistically significant. Severe splenomegaly was predominant among parasitaemic gravidae who also harboured S. mansoni infection in two of the hospitals studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The epidemiology of the transmission of malaria parasites varies ecologically. To observe some entomological aspects of the malaria transmission in an urban environment, a longitudinal survey of anopheline fauna was performed in Boa Vista, Roraima, Brazil. A total of 7,263 anophelines was collected in human bait at 13 de Setembro and Caranã districts: Anopheles albitarsis sensu lato (82.8%), An. darlingi (10.3%), An. braziliensis (5.5%), An. peryassui (0.9%) and An. nuneztovari (0.5%). Nightly 12 h collections showed that An. albitarsis was actively biting throughout the night with peak activities at sunset and at midnight. An. darlingi bit during all night and did not demonstrate a defined biting peak. Highest biting indices, entomological inoculation rates and malaria cases were observed seasonally during the rainy season (April-November). Hourly collections showed host seek activity for all mosquitoes peaked during the first hour after sunset. An. darlingi showed the highest plasmodial malaria infection rate followed by An. albitarsis, An. braziliensis and An. nuneztovari (8.5%, 4.6%, 3% and 2.6%, respectively). An. albitarsis was the most frequently collected anopheline, presented the highest biting index and it was the second most frequently collected infected species infected with malaria parasites. An. albitarsis and An. darlingi respectively, are the primary vectors of malaria throughout Boa Vista.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anopheles (Nyssorhynchus) marajoara is a proven primary vector of malaria parasites in Northeast Brazil, and An. deaneorum is a suspected vector in Western Brazil. Both are members of the morphologically similar Albitarsis Complex, which also includes An. albitarsis and an undescribed species, An. albitarsis "B". These four species were recognized and can be identified using random amplified polymorphic DNA (RAPD) markers, but various other methodologies also point to multiple species under the name An. albitarsis. We describe here a technique for identification of these species employing polymerase chain reaction (PCR) primers based on ribosomal DNA internal transcribed spacer 2 (rDNA ITS2) sequence. Since this method is based on known sequence it is simpler than the sometimes problematical RAPD-PCR. Primers were tested on samples previously identified using RAPD markers with complete correlation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arthropod-borne diseases caused by a variety of microorganisms such as dengue virus and malaria parasites afflict billions of people worldwide imposing major economic and social burdens. Despite many efforts, vaccines against diseases transmitted by mosquitoes, with the exception of yellow fever, are not available. Control of such infectious pathogens is mainly performed by vector management and treatment of affected individuals with drugs. However, the numbers of insecticide-resistant insects and drug-resistant parasites are increasing. Therefore, inspired in recent years by a lot of new data produced by genomics and post-genomics research, several scientific groups have been working on different strategies to control infectious arthropod-borne diseases. This review focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to malaria parasites and dengue virus transmission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insect-borne diseases are responsible for severe mortality and morbidity worldwide. As control of insect vector populations relies primarily on the use of insecticides, the emergence of insecticide resistance as well to unintended consequences of insecticide use pose significant challenges to their continued application. Novel approaches to reduce pathogen transmission by disease vectors are been attempted, including transmission-blocking vaccines (TBVs) thought to be a feasible strategy to reduce pathogen burden in endemic areas. TBVs aim at preventing the transmission of pathogens from infected to uninfected vertebrate host by targeting molecule(s) expressed on the surface of pathogens during their developmental phase within the insect vector or by targeting molecules expressed by the vectors. For pathogen-based molecules, the majority of the TBV candidates selected as well as most of the data available regarding the effectiveness of this approach come from studies using malaria parasites. However, TBV candidates also have been identified from midgut tissues of mosquitoes and sand flies. In spite of the successes achieved in the potential application of TBVs against insect-borne diseases, many significant barriers remain. In this review, many of the TBV strategies against insect-borne pathogens and their respective ramification with regards to the immune response of the vertebrate host are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of climatic factors on the seasonal frequency of mosquitoes (Diptera: Culicidae) at the Peixe Angical hydroelectric scheme (Tocantins, Brazil) was evaluated in the present paper. Mosquito surveys were conducted in the municipality of Peixe and in areas surrounding the reservoir in the municipalities of Paranã and São Salvador do Tocantins during two daytime periods (10 am-12 noon and 2 pm-4 pm) and two night-time periods (6 pm-8 pm and 6 pm-10 am) over 14 months. In total, 10,840 specimens from 42 species were captured, 84.5% of which belonged to the Culcinae. The most common species were Anopheles darlingi, Psorophora albipes and Sabethes chloropterus. The number of Culicidae specimens was higher in months with higher rainfall and air humidity than during the drier months. The large population of Ps. albipes and the presence of both An. darlingi (primary vector for human malaria parasites) and Haemagogus janthinomys (primary vector for yellow fever virus) are highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The global emergence and spread of malaria parasites resistant to antimalarial drugs is the major problem in malaria control. The genetic basis of the parasite's resistance to the antimalarial drug chloroquine (CQ) is well-documented, allowing for the analysis of field isolates of malaria parasites to address evolutionary questions concerning the origin and spread of CQ-resistance. Here, we present DNA sequence analyses of both the second exon of the Plasmodium falciparum CQ-resistance transporter (pfcrt) gene and the 5' end of the P. falciparum multidrug-resistance 1 (pfmdr-1) gene in 40 P. falciparum field isolates collected from eight different localities of Odisha, India. First, we genotyped the samples for the pfcrt K76T and pfmdr-1 N86Y mutations in these two genes, which are the mutations primarily implicated in CQ-resistance. We further analyzed amino acid changes in codons 72-76 of the pfcrt haplotypes. Interestingly, both the K76T and N86Y mutations were found to co-exist in 32 out of the total 40 isolates, which were of either the CVIET or SVMNT haplotype, while the remaining eight isolates were of the CVMNK haplotype. In total, eight nonsynonymous single nucleotide polymorphisms (SNPs) were observed, six in the pfcrt gene and two in the pfmdr-1 gene. One poorly studied SNP in the pfcrt gene (A97T) was found at a high frequency in many P. falciparum samples. Using population genetics to analyze these two gene fragments, we revealed comparatively higher nucleotide diversity in the pfcrt gene than in the pfmdr-1 gene. Furthermore, linkage disequilibrium was found to be tight between closely spaced SNPs of the pfcrt gene. Finally, both the pfcrt and the pfmdr-1 genes were found to evolve under the standard neutral model of molecular evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Countries could use the monitoring of drug resistance in malaria parasites as an effective early warning system to develop the timely response mechanisms that are required to avert the further spread of malaria. Drug resistance surveillance is essential in areas where no drug resistance has been reported, especially if neighbouring countries have previously reported resistance. Here, we present the results of a four-year surveillance program based on the sequencing of the pfcrt gene of Plasmodium falciparum populations from endemic areas of Honduras. All isolates were susceptible to chloroquine, as revealed by the pfcrt “CVMNK” genotype in codons 72-76.