25 resultados para Lung Volume Measurements
Resumo:
An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, activity, and ideal solution.
Resumo:
OBJECTIVE: To standardize a technique for ventilating rat fetuses with Congenital Diaphragmatic Hernia (CDH) using a volume-controlled ventilator.METHODS: Pregnant rats were divided into the following groups: a) control (C); b) exposed to nitrofen with CDH (CDH); and c) exposed to nitrofen without CDH (N-). Fetuses of the three groups were randomly divided into the subgroups ventilated (V) and non-ventilated (N-V). Fetuses were collected on day 21.5 of gestation, weighed and ventilated for 30 minutes using a volume-controlled ventilator. Then the lungs were collected for histological study. We evaluated: body weight (BW), total lung weight (TLW), left lung weight (LLW), ratios TLW / BW and LLW / BW, morphological histology of the airways and causes of failures of ventilation.RESULTS: BW, TLW, LLW, TLW / BW and LLW / BW were higher in C compared with N- (p <0.05) and CDH (p <0.05), but no differences were found between the subgroups V and N-V (p> 0.05). The morphology of the pulmonary airways showed hypoplasia in groups N- and CDH, with no difference between V and N-V (p <0.05). The C and N- groups could be successfully ventilated using a tidal volume of 75 ìl, but the failure of ventilation in the CDH group decreased only when ventilated with 50 ìl.CONCLUSION: Volume ventilation is possible in rats with CDH for a short period and does not alter fetal or lung morphology.
Resumo:
Since the most characteristic feature of paraquat poisoning is lung damage, a prospective controlled study was performed on excised rat lungs in order to estimate the intensity of lesion after different doses. Twenty-five male, 2-3-month-old non-SPF Wistar rats, divided into 5 groups, received paraquat dichloride in a single intraperitoneal injection (0, 1, 5, 25, or 50 mg/kg body weight) 24 h before the experiment. Static pressure-volume (PV) curves were performed in air- and saline-filled lungs; an estimator of surface tension and tissue works was computed by integrating the area of both curves and reported as work/ml of volume displacement. Paraquat induced a dose-dependent increase of inspiratory surface tension work that reached a significant two-fold order of magnitude for 25 and 50 mg/kg body weight (P<0.05, ANOVA), sparing lung tissue. This kind of lesion was probably due to functional abnormalities of the surfactant system, as was shown by the increase in the hysteresis of the paraquat groups at the highest doses. Hence, paraquat poisoning provides a suitable model of acute lung injury with alveolar instability that can be easily used in experimental protocols of mechanical ventilation
Resumo:
The strength of the respiratory muscles can be evaluated from static measurements (maximal inspiratory and expiratory pressures, MIP and MEP) or inferred from dynamic maneuvers (maximal voluntary ventilation, MVV). Although these data could be suitable for a number of clinical and research applications, no previous studies have provided reference values for such tests using a healthy, randomly selected sample of the adult Brazilian population. With this main purpose, we prospectively evaluated 100 non-smoking subjects (50 males and 50 females), 20 to 80 years old, selected from more than 8,000 individuals. Gender-specific linear prediction equations for MIP, MEP and MVV were developed by multiple regression analysis: age and, secondarily, anthropometric measurements explained up to 56% of the variability of the dependent variables. The most cited previous studies using either Caucasian or non-Caucasian samples systematically underestimated the observed values of MIP (P<0.05). Interestingly, the self-reported level of regular physical activity and maximum aerobic power correlates strongly with both respiratory and peripheral muscular strength (knee extensor peak torque) (P<0.01). Our results, therefore, provide a new frame of reference to evaluate the normalcy of some useful indexes of respiratory muscle strength in Brazilian males and females aged 20 to 80.
Resumo:
Carbon monoxide diffusing capacity (DLCO) or transfer factor (TLCO) is a particularly useful test of the appropriateness of gas exchange across the lung alveolocapillary membrane. With the purpose of establishing predictive equations for DLCO using a non-smoking sample of the adult Brazilian population, we prospectively evaluated 100 subjects (50 males and 50 females aged 20 to 80 years), randomly selected from more than 8,000 individuals. Gender-specific linear prediction equations were developed by multiple regression analysis with single breath (SB) absolute and volume-corrected (VA) DLCO values as dependent variables. In the prediction equations, age (years) and height (cm) had opposite effects on DLCOSB (ml min-1 mmHg-1), independent of gender (-0.13 (age) + 0.32 (height) - 13.07 in males and -0.075 (age) + 0.18 (height) + 0.20 in females). On the other hand, height had a positive effect on DLCOSB but a negative one on DLCOSB/VA (P<0.01). We found that the predictive values from the most cited studies using predominantly Caucasian samples were significantly different from the actually measured values (P<0.05). Furthermore, oxygen uptake at maximal exercise (VO2max) correlated highly to DLCOSB (R = 0.71, P<0.001); this variable, however, did not maintain an independent role to explain the VO2max variability in the multiple regression analysis (P>0.05). Our results therefore provide an original frame of reference for either DLCOSB or DLCOSB/VA in Brazilian males and females aged 20 to 80 years, obtained from the standardized single-breath technique.
Resumo:
Tumor necrosis factor-alpha (TNF-alpha) is one of the most important proinflammatory cytokines which plays a central role in host defense and in the acute inflammatory response related to tissue injury. The major source of TNF-alpha are immune cells such as neutrophils and macrophages. We tested the hypothesis that pentoxifylline, a methylxanthine derivative, down-regulates proinflammatory cytokine expression during acute lung injury in rats. Male Wistar rats weighing 250 to 450 g were anesthetized ip with 50 mg/kg sodium thiopental and randomly divided into three groups: group 1 (N = 7): tidal volume (V T) = 7 ml/kg, respiratory rate (RR) = 50 breaths/min and normal saline infusion; group 2 (N = 7): V T = 42 ml/kg, RR = 9 breaths/min and normal saline infusion; group 3 (N = 7): V T = 42 ml/kg, RR = 9 breaths/min and pentoxifylline infusion. The animals were ventilated with an inspired oxygen fraction of 1.0, a positive end-expiratory pressure of 3 cmH2O, and normal saline or pentoxifylline injected into the left femoral vein. The mRNA of TNF-alpha rapidly increased in the lung tissue within 180 min of ventilation with a higher V T with normal saline infusion. The concentrations of inflammatory mediators were decreased in plasma and bronchoalveolar lavage (BAL) in the presence of higher V T with pentoxifylline infusion (TNF-alpha: plasma, 102.2 ± 90.9 and BAL, 118.2 ± 82.1; IL-1ß: plasma, 45.2 ± 42.7 and BAL, 50.2 ± 34.9, P < 0.05). We conclude that TNF-alpha produced by neutrophil influx may function as an alert signal in host defense to induce production of other inflammatory mediators.
Resumo:
Studies of cooking-generated NO2 effects are rare in occupational epidemiology. In the present study, we evaluated the lung function of professional cooks exposed to NO2 in hospital kitchens. We performed spirometry in 37 cooks working in four hospital kitchens and estimated the predicted FVC, FEV1 and FEF25-75, based on age, sex, race, weight, and height, according to Knudson standards. NO2 measurements were obtained for 4 consecutive days during 4 different periods at 20-day intervals in each kitchen. Measurements were performed inside and outside the kitchens, simultaneously using Palm diffusion tubes. A time/exposure indicator was defined as representative of the cumulative exposure of each cook. No statistically significant effect of NO2 exposure on FVC was found. Each year of work as a cook corresponded to a decrease in predicted FEV1 of 2.5% (P = 0.046) for the group as a whole. When smoking status and asthma were included in the analysis the effect of time/exposure decreased about 10% and lost statistical significance. On predicted FEF25-75, a decrease of 3.5% (P = 0.035) was observed for the same group and the inclusion of controllers for smoking status and asthma did not affect the effects of time/exposure on pulmonary function parameter. After a 10-year period of work as cooks the participants of the study may present decreases in both predicted FEV1 and FEF25-75 that can reach 20 and 30%, respectively. The present study showed small but statistically significant adverse effects of gas stove exposure on the lung function of professional cooks.
Resumo:
Several factors are associated with bronchopulmonary dysplasia. Among them, hyperoxia and lung immaturity are considered to be fundamental; however, the effect of malnutrition is unknown. Our objective was to evaluate the effects of 7 days of postnatal malnutrition and hyperoxia on lung weight, volume, water content, and pulmonary morphometry of premature rabbits. After c-section, 28-day-old New Zealand white rabbits were randomized into four groups: control diet and room air (CA, N = 17), control diet and ≥95% O2 (CH, N = 17), malnutrition and room air (MA, N = 18), and malnutrition and ≥95% O2 (MH, N = 18). Malnutrition was defined as a 30% reduction of all the nutrients provided in the control diet. Treatments were maintained for 7 days, after which histological and morphometric analyses were conducted. Lung slices were stained with hematoxylin-eosin, modified orcein-resorcin or picrosirius. The results of morphometric analysis indicated that postnatal malnutrition decreased lung weight (CA: 0.83 ± 0.19; CH: 0.96 ± 0.28; MA: 0.65 ± 0.17; MH: 0.79 ± 0.22 g) and water content, as well as the number of alveoli (CA: 12.43 ± 3.07; CH: 8.85 ± 1.46; MA: 7.33 ± 0.88; MH: 6.36 ± 1.53 x 10-3/mm) and elastic and collagen fibers. Hyperoxia reduced the number of alveoli and increased septal thickening and the mean linear intercept. The reduction of alveolar number, collagen and elastic fibers was intensified when malnutrition and hyperoxia were associated. These data suggest that dietary restriction enhances the magnitude of hyperoxia-induced alveolar growth arrest and lung parenchymal remodeling. It is interesting to consider the important influence of postnatal nutrition upon lung development and bronchopulmonary dysplasia.
Resumo:
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW) = rib cage (V RC) + abdomen (V AB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05). EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI) V CW (P < 0.05). In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.
Resumo:
Few studies evaluate the amount of particulate matter less than 2.5 mm in diameter (PM2.5) in relation to a change in lung function among adults in a population. The aim of this study was to assess the association of coal as a domestic energy source to pulmonary function in an adult population in inner-city areas of Zunyi city in China where coal use is common. In a cross-sectional study of 104 households, pulmonary function measurements were assessed and compared in 110 coal users and 121 non-coal users (≥18 years old) who were all nonsmokers. Several sociodemographic factors were assessed by questionnaire, and ventilatory function measurements including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), the FEV1/FVC ratio, and peak expiratory flow rate (PEFR) were compared between the 2 groups. The amount of PM2.5 was also measured in all residences. There was a significant increase in the relative concentration of PM2.5 in the indoor kitchens and living rooms of the coal-exposed group compared to the non-coal-exposed group. In multivariate analysis, current exposure to coal smoke was associated with a 31.7% decrease in FVC, a 42.0% decrease in FEV1, a 7.46% decrease in the FEV1/FVC ratio, and a 23.1% decrease in PEFR in adult residents. The slope of lung function decrease for Chinese adults is approximately a 2-L decrease in FVC, a 3-L decrease in FEV1, and an 8 L/s decrease in PEFR per count per minute of PM2.5 exposure. These results demonstrate the harmful effects of indoor air pollution from coal smoke on the lung function of adult residents and emphasize the need for public health efforts to decrease exposure to coal smoke.