82 resultados para Low protein latex
Resumo:
Malnutrition hampers the course of schistosomiasis mansoni infection just as normal growth of adult worms. A comparative morphometric study on adult specimens (male and female) recovered from undernourished (fed with a low protein diet - regional basic diet) and nourished (rodent commercial laboratory food, NUVILAB) white mice was performed. Tomographic images and morphometric analysis of the oral and ventral suckers, reproductive system and tegument were obtained by means of confocal laser scanning microscopy. Undernourished male specimens presented smaller morphometric values (length and width) of the reproductive system (first, third and last testicular lobes) and thickness of the tegument than controls. Besides that, it was demonstrated that the dorsal surface of the male worms bears large tubercles unevenly distributed, but kept grouped and flat. At the subtegumental region, vacuolated areas were detected. It was concluded that the inadequate nutritional status of the vertebrate host has a negative influence mainly in the reproductive system and topographical somatic development of male adult Schistosoma mansoni, inducing some alterations on the structure of the parasite.
Resumo:
Some unfavourable effects of malnutrition of the host on Schistosoma mansoni worm biology and structure have been reported based upon brigthfield microscopy. This paper aims to study by morphometric techniques, some morphological parameters in male and female adult worms recovered from undernourished albino mice in comparison with parasites recovered from well-fed infected mice. Undernourished animals were fed a multideficient and essentially low protein diet (RBD diet) and compared to well-fed control mice fed with the commercial diet NUVILAB. Seventy-five days post-infection with 80 cercarie (BL strain) animals were sacrificed. All adult worms were fixed in 10% formalin and stained with carmine chloride. One hundred male and 60 female specimens from each group (undernourished and control) were examined using an image system analysis Leica Quantimet 500C and the Sigma Scan Measurement System. The following morphometrical parameters were studied: body length and width, oral and ventral suckers, number and area of testicular lobes, length and width of ovary and uterine egg. For statistical analysis, the Student's t test for unpaired samples was applied. Significant differences (p < 0.05) were detected in body length and width, in parameters of suckers, uterine egg width, ovary length and area of testicular lobes, with lower values for specimens from undernourished mice. The nutritional status of the host has negative influence on S. mansoni adult worms, probably through unavailability of essential nutrients to the parasites.
Resumo:
A growing body of evidence supports the concept of fetal programming in cardiovascular disease in man, which asserts that an insult experienced in utero exerts a long-term influence on cardiovascular function, leading to disease in adulthood. However, this hypothesis is not universally accepted, hence animal models may be of value in determining potential physiological mechanisms which could explain how fetal undernutrition results in cardiovascular disease in later life. This review describes two major animal models of cardiovascular programming, the in utero protein-restricted rat and the cross-fostered spontaneously hypertensive rat. In the former model, moderate maternal protein restriction during pregnancy induces an increase in offspring blood pressure of 20-30 mmHg. This hypertensive effect is mediated, in part, by fetal exposure to excess maternal glucocorticoids as a result of a deficiency in placental 11-ß hydroxysteroid dehydrogenase type 2. Furthermore, nephrogenesis is impaired in this model which, coupled with increased activity of the renin-angiotensin system, could also contribute to the greater blood pressure displayed by these animals. The second model discussed is the cross-fostered spontaneously hypertensive rat. Spontaneously hypertensive rats develop severe hypertension without external intervention; however, their adult blood pressure may be lowered by 20-30 mmHg by cross-fostering pups to a normotensive dam within the first two weeks of lactation. The mechanisms responsible for this antihypertensive effect are less clear, but may also involve altered renal function and down-regulation of the renin-angiotensin system. These two models clearly show that adult blood pressure is influenced by exposure to one of a number of stimuli during critical stages of perinatal development.
Resumo:
The objective of the present study was to determine the effect of protein malnutrition on the glycoprotein content of bone marrow extracellular matrix (ECM). Two-month-old male Swiss mice were submitted to protein malnutrition with a low-protein diet containing 4% casein as compared to 20% casein in the control diet. When the experimental group had attained a 20% loss of their original body weight, we extracted the ECM proteins from bone marrow with PBS buffer, and analyzed ECM samples by SDS-PAGE (7.5%) and ECL Western blotting. Quantitative differences were observed between control and experimental groups. Bone marrow ECM from undernourished mice had greater amounts of extractable fibronectin (1.6-fold increase) and laminin (4.8-fold increase) when compared to the control group. These results suggest an association between fluctuations in the composition of the hematopoietic microenvironment and altered hematopoiesis observed in undernourished mice.
Resumo:
Undernutrition elicited by a low-protein diet determines a marked reduction of hypophyseal activity and affects the function of the respective target organs. The objective of the present investigation was to study the ultrastructural and quantitative immunohistochemical changes of the different pituitary cell populations in undernourished monkeys that had been previously shown to have significant changes in craniofacial growth. Twenty Saimiri sciureus boliviensis monkeys of both sexes were used. The animals were born in captivity and were separated into two groups at one year of age, i.e., control and undernourished animals. The monkeys were fed ad libitum a 20% (control group) and a 10% (experimental group) protein diet for two years. Pituitaries were processed for light and electron microscopy. The former was immunolabeled with anti-GH, -PRL, -LH, -FSH, -ACTH, and -TSH sera. Volume density and cell density were measured using an image analyzer. Quantitative immunohistochemistry revealed a decrease in these parameters with regard to somatotrophs, lactotrophs, gonadotrophs and thyrotrophs from undernourished animals compared to control ones. In these populations, the ultrastructural study showed changes suggesting compensatory hyperfunction. On the contrary, no significant changes were found in the morphometric parameters or the ultrastructure of the corticotroph population. We conclude that in undernourished monkeys the somatotroph, lactotroph, gonadotroph, and thyrotroph cell populations showed quantitative immunohistochemical changes that can be correlated with ultrastructural findings.
Resumo:
Maternal dietary protein restriction during pregnancy is associated with low fetal birth weight and leads to renal morphological and physiological changes. Different mechanisms can contribute to this phenotype: exposure to fetal glucocorticoid, alterations in the components of the renin-angiotensin system, apoptosis, and DNA methylation. A low-protein diet during gestation decreases the activity of placental 11ß-hydroxysteroid dehydrogenase, exposing the fetus to glucocorticoids and resetting the hypothalamic-pituitary-adrenal axis in the offspring. The abnormal function/expression of type 1 (AT1R) or type 2 (AT2R) AngII receptors during any period of life may be the consequence or cause of renal adaptation. AT1R is up-regulated, compared with control, on the first day after birth of offspring born to low-protein diet mothers, but this protein appears to be down-regulated by 12 days of age and thereafter. In these offspring, AT2R expression differs from control at 1 day of age, but is also down-regulated thereafter, with low nephron numbers at all ages: from the fetal period, at the end of nephron formation, and during adulthood. However, during adulthood, the glomerular filtration rate is not altered, due to glomerulus and podocyte hypertrophy. Kidney tubule transporters are regulated by physiological mechanisms; Na+/K+-ATPase is inhibited by AngII and, in this model, the down-regulated AngII receptors fail to inhibit Na+/K+-ATPase, leading to increased Na+ reabsorption, contributing to the hypertensive status. We also considered the modulation of pro-apoptotic and anti-apoptotic factors during nephrogenesis, since organogenesis depends upon a tight balance between proliferation, differentiation and cell death.
Resumo:
The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.
Resumo:
The objective of this study was to assess vitamin A status and association between acute diarrhoea and plasma levels of vitamin A through cross-sectional comparison in children. Plasma vitamin A was measured by colorimetric method of Neeld & Pearson and RBP by radial immunodiffusion technique. Seventy eight children (aged 18-119 months), 26 with current history of diarrhoea and 52 children as controls (outpatient from the Santa Casa de Misericórdia Hospital in metropolitan area of São Paulo City, Brazil) were studied. Children with history of diarrhoea showed significant low levels (mean ± s.e.) as compared to controls, vitamin A (15.87 ± 1.4 µg/dl vs. 21.14 ± 1.15 µg/dl, p < 0.007) and RBP (1.70 ± 0.2 mg/dl vs. 2.52 ±0.11 mg/dl). Multivariate logistic regression adjusted by sex, age, nutritional status and mother education revealed association between diarrhoea and inadequate levels of vitamin A and RBP.
Resumo:
Calotropis procera R. Br. (Asclepiadaceae) is a well-known medicinal plant with leaves, roots, and bark being exploited by popular medicine to fight many human and animal diseases. This work deals with the fractionation of the crude latex produced by the green parts of the plant and aims to evaluate its toxic effects upon egg hatching and larval development of Aedes aegypti. The whole latex was shown to cause 100% mortality of 3rd instars within 5 min. It was fractionated into water-soluble dialyzable (DF) and non-dialyzable (NDF) rubber-free materials. Both fractions were partially effective to prevent egg hatching and most of individuals growing under experimental conditions died before reaching 2nd instars or stayed in 1st instars. Besides, the fractions were very toxic to 3rd instars causing 100% mortality within 24 h. When both fractions were submitted to heat-treatment the toxic effects were diminished considerably suggesting low thermostability of the toxic compounds. Polyacrylamide gel electrophoresis of both fractions and their newly fractionated peaks obtained through ion exchange chromatography or desalting attested the presence of proteins in both materials. When submitted to protease digestion prior to larvicidal assays NDF lost most of its toxicity but DF was still strongly active. It may be possible that the highly toxic effects of the whole latex from C. procera upon egg hatching and larvae development should be at least in part due to its protein content found in NDF. However the toxicity seems also to involve non protein molecules present in DF.
Resumo:
A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.
Resumo:
Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.
Resumo:
We describe the changes in peptide composition by SDS-PAGE analysis of latex from Carica papaya collected at various times after incision of the unripe fruit. The data show that during latex coagulation several peptides are processed in an orderly fashion.
Resumo:
This study examined if leucine, arginine or glycine supplementation in adult obese patients (body mass index of 33 ± 4 kg/m²) consuming a Brazilian low energy and protein diet (4.2 MJ/day and 0.6 g protein/kg) affects protein and amino acid metabolism. After four weeks adaptation to this diet, each subject received supplements of these amino acids (equivalent to 0.2 g protein kg-1 day-1) in random order. On the seventh day of each amino acid supplementation, a single-dose 15N-glycine study was carried out. There were no significant differences in protein flux, synthesis or breakdown. The protein flux (grams of nitrogen, gN/9 h) was 55 ± 24 during the nonsupplemented diet intake and 39 ± 10, 44 ± 22 and 58 ± 35 during the leucine-, glycine- and arginine-supplemented diet intake, respectively; protein synthesis (gN/9 h) was 57 ± 24, 36 ± 10, 41 ± 22 and 56 ± 36, respectively; protein breakdown (gN/9 h) was 51 ± 24, 34 ± 10, 32 ± 28 and 53 ± 35, respectively; kinetic balance (gN/9 h) was 3.2 ± 1.8, 4.1 ± 1.7, 3.4 ± 2.9 and 3.9 ± 1.6. There was no difference in amino acid profiles due to leucine, arginine or glycine supplementation. The present results suggest that 0.6 g/kg of dietary protein is enough to maintain protein turnover in obese women consuming a reduced energy diet and that leucine, arginine or glycine supplementation does not change kinetic balance or protein synthesis.
Resumo:
Previous studies have shown that exogenously generated nitric oxide (NO) inhibits smooth muscle cell proliferation. In the present study, we stimulated rabbit vascular smooth muscle cells (RVSMC) with E. coli lipopolysaccharide (LPS), a known inducer of NO synthase transcription, and established a connection between endogenous NO, phosphorylation/dephosphorylation-mediated signaling pathways, and DNA synthesis. Non-confluent RVSMC were cultured with 0, 5, 10, or 100 ng/ml of the endotoxin. NO release was increased by 86.6% (maximum effect) in low-density cell cultures stimulated with 10 ng/ml LPS as compared to non-stimulated controls. Conversely, LPS (5 to 100 ng/ml) did not lead to enhanced NO production in multilayered (high density) RVSMC. DNA synthesis measured by thymidine incorporation showed that LPS was mitogenic only to non-confluent RVSMC; furthermore, the effect was prevented statistically by aminoguanidine (AG), a potent inhibitor of the inducible NO synthase, and oxyhemoglobin, an NO scavenger. Finally, there was a cell density-dependent LPS effect on protein tyrosine phosphatase (PTP) and ERK1/ERK2 mitogen-activated protein (MAP) kinase activities. Short-term transient stimulation of ERK1/ERK2 MAP kinases was maximal at 12 min in non-confluent RVSMC and was prevented by preincubation with AG, whereas PTP activities were inhibited in these cells after 24-h LPS stimulation. Conversely, no significant LPS-mediated changes in kinase or phosphatase activities were observed in high-density cells. LPS-induced NO generation by RVSMC may switch on a cell density-dependent proliferative signaling cascade, which involves the participation of PTP and the ERK1/ERK2 MAP kinases.
Resumo:
Hormone replacement therapy (HRT) reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp) and oxidized low density lipoprotein (LDL) have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11) and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02) (P<0.05 and P<0.001, respectively, ANOVA). The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.