95 resultados para Linear correlation
Resumo:
Disseminated leishmaniasis (DL) differs from other clinical forms of the disease due to the presence of many non-ulcerated lesions (papules and nodules) in non-contiguous areas of the body. We describe the histopathology of DL non-ulcerated lesions and the presence of CD4-, CD20-, CD68-, CD31- and von Willebrand factor (vW)-positive cells in the inflamed area. We analysed eighteen biopsies from non-ulcerated lesions and quantified the inflamed areas and the expression of CD4, CD20, CD68, CD31 and vW using Image-Pro software (Media Cybernetics). Diffuse lymphoplasmacytic perivascular infiltrates were found in dermal skin. Inflammation was observed in 3-73% of the total biopsy area and showed a significant linear correlation with the number of vW+ vessels. The most common cells were CD68+ macrophages, CD20+ B-cells and CD4+ T-cells. A significant linear correlation between CD4+ and CD20+ cells and the size of the inflamed area was also found. Our findings show chronic inflammation in all DL non-ulcerated lesions predominantly formed by macrophages, plasmacytes and T and B-cells. As the inflamed area expanded, the number of granulomas and extent of the vascular framework increased. Thus, we demonstrate that vessels may have an important role in the clinical evolution of DL lesions.
Resumo:
Protein content of leaf-cutting ant queens before the nuptial flight and during the post-claustral phase. This study evaluated the crude protein content of queens of Atta sexdens before the nuptial flight and after the claustral phase in laboratory and field colonies. The hypothesis was that protein is used for survival of the queen and for early colony growth during the claustral phase. Additionally, the nest morphology, live biomass and adult population of field colonies were evaluated. Crude protein was determined by digestion of the organic material with sulfuric acid at high temperatures. The mean crude protein content was 123.23 ± 11.20 mg for females before the nuptial flight and 70.44 ± 12.21 mg for laboratory-reared queens after the claustral phase. The post-claustral crude protein content of field-collected queen was 55.90 ± 9.18 mg. With respect to the loss of crude protein as a function of duration of the claustral phase, laboratory-reared queens lost 52.79 mg and field-collected queens lost 67.33 mg compared to females before the nuptial flight. A positive linear correlation was observed between the weight of field-collected queens (256.4 ± 36.3 mg) and colony biomass (13.02 ± 9.12 g), but there was no correlation between biomass and nest depth (13.11 ± 3.82 cm). As expected, the present results support the hypothesis that protein is used for survival of the queen and for early colony growth, as demonstrated by the reduction in crude protein content as a function of duration of the claustral phase. To our knowledge, this is the first study to provide data of the dynamics of protein reserves in leaf-cutting ant queens during the claustral phase.
Resumo:
Alfalfa is an important forage crop with high nutritive value, although highly susceptible to soil acidity. Liming is one of the most efficient and prevailing practices to correct soil acidity and improve alfalfa yield. The objective of this study was to evaluate response to liming of alfalfa grown in a greenhouse on a Typic Quartzipsamment soil. The treatments consisted of four lime rates (0, 3.8, 6.6 and 10.3 Mg ha-1) and two cuts. Alfalfa dry matter increased quadratically with increasing lime rates. In general, dry matter yield was maximized by a lime rate of 8.0 Mg ha-1. Except for the control, the dry matter nutrient contents in the treatments were adequate. The positive linear correlation between root and nodule dry matter with lime rates indicated improvement of these plant traits with decreasing soil acidity. The soil acidity indices pH, base saturation, Ca2+ concentration, Mg2+ concentration, and H + Al were relevant factors in the assessment of alfalfa yield. The magnitude of influence of these soil acidity indices on yield as determined by the coefficient of determination (R²) varied and decreased in the order: base saturation, H + Al, pH, Ca and Mg concentrations. Optimum values of selected soil chemical properties were defined for maximum shoot dry matter; these values can serve as a guideline for alfalfa liming to improve the yield of this forage on acid soils.
Resumo:
Currently, sugarcane plays an important global role, particularly with a view to alternative energy sources. Thus, in a sugarcane field of the mill Vale do Paraná S/A Álcool e Açúcar, Rubineia, São Paulo State, managed under two green cane harvest systems (cane trash left on and cane trash removed from the soil), Pearson and spatial correlations between the sugarcane yield (variety RB855035 in the third cut) and soil physical and chemical properties were studied to identify the property best correlated with stalk yield and the best harvest method. For this purpose, two geostatistical grids (121 sampling points on 1.30 ha) were installed on a eutrophic Red Argisol (homogeneous slope of 0.065 m m-1), in 2011, to determine the properties: stalk yield and sugarcane plant population, and soil resistance to penetration, gravimetric moisture, bulk density, and carbon stock, in the layers 0-0.20 and 0.20-0.40 m. The data were analyzed by descriptive, linear correlation and geostatistical analysis. In both treatments, the property stand density was best correlated with sugarcane yield (r = 0.725 in the trash mulching treatment - TM and r = 0.769 in the trash removal treatment - TR). However, in relation to the soil properties, bulk density (0-0.20 m) was best correlated (r = 0.305 in TM, r = 0.211 in TR). Similarly, from the spatial point of view, stand density was the property that best explained the sugarcane yield. However, in the TM treatment the density (0.20-0.40 m) was the only soil property spatially correlated with stalk yield. The carbon stock in the soil of the TM was 11.5 % higher than in the TR treatment. Results of the TM treatment were best, also with regard to soil management and conservation.
Resumo:
Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.
Resumo:
Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.
Resumo:
The objective of this work was to determine the critical irrigation time for common bean (Phaseolus vulgaris L. cv. Carioca) using infrared thermometry. Five treatments were analyzed. Canopy temperature differences between plants and a well-watered control about 1, 2, 3, 4, and 5±0.5ºC were tested. Physiological variables and plant growth were analyzed to establish the best time to irrigate. There was a significant linear correlation between the index and stomatal resistance, transpiration rate, and leaf water potential. Although significant linear correlation between the index and mean values of total dry matter, absolute growth rate, and leaf area index was found, no correlation was found with other growth index like relative growth rate, net assimilation rate, and leaf area ratio. Plants irrigated when their canopy temperature was 3±0.5ºC above the control had their relative growth rate mean value increased up to 59.7%, yielding 2,260.2 kg ha-1, with a reduction of 38.0% in the amount of water used. Plants irrigated when their canopy temperature was 4±0.5ºC yielded 1,907.6 kg ha-1, although their relative growth rate mean value was 4.0% below the control. These results show that the best moment to irrigate common bean is when their canopy temperature is between 3ºC and 4±0.5ºC above the control.
Resumo:
The aim of this work was to quantify low molecular weight organic acids in the rhizosphere of plants grown in a sewage sludge-treated media, and to assess the correlation between the release of the acids and the concentrations of trace-elements in the shoots of the plants. The species utilized in the experiment were cultivated in sand and sewage sludge-treated sand. The acetic, citric, lactic, and oxalic acids, were identified and quantified by high performance liquid chromatography in samples collected from a hydroponics system. Averages obtained from each treatment, concentration of trace elements in shoots and concentration of organic acids in the rhizosphere, were compared by Tukey test, at 5% of probability. Linear correlation analysis was applied to verify an association between the concentrations of organic acids and of trace elements. The average composition of organic acids for all plants was: 43.2, 31.1, 20.4 and 5.3% for acetic, citric, lactic, and oxalic acids, respectively. All organic acids evaluated, except for the citric acid, showed a close statistical agreement with the concentrations of Cd, Cu, Ni, and Zn found in the shoots. There is a positive relationship between organic acids present in the rhizosphere and trace element phytoavailability.
Resumo:
Objective: To determine the presence of linear relationship between renal cortical thickness, bipolar length, and parenchymal thickness in chronic kidney disease patients presenting with different estimated glomerular filtration rates (GFRs) and to assess the reproducibility of these measurements using ultrasonography. Materials and Methods: Ultrasonography was performed in 54 chronic renal failure patients. The scans were performed by two independent and blinded radiologists. The estimated GFR was calculated using the Cockcroft-Gault equation. Interobserver agreement was calculated and a linear correlation coefficient (r) was determined in order to establish the relationship between the different renal measurements and estimated GFR. Results: The correlation between GFR and measurements of renal cortical thickness, bipolar length, and parenchymal thickness was, respectively, moderate (r = 0.478; p < 0.001), poor (r = 0.380; p = 0.004), and poor (r = 0.277; p = 0.116). The interobserver agreement was considered excellent (0.754) for measurements of cortical thickness and bipolar length (0.833), and satisfactory for parenchymal thickness (0.523). Conclusion: The interobserver reproducibility for renal measurements obtained was good. A moderate correlation was observed between estimated GFR and cortical thickness, but bipolar length and parenchymal thickness were poorly correlated.
Resumo:
The hedonic level of commercial cachaças, was evaluated by consumers and by a tasters. The results of sensorial methods analyzed trough Principal Components Analysis, Hierarchical Cluster Analysis and the Pearson linear correlation indicated that the best classified cachaças were produced in copper stills and aged in oak casks. By contrast the worst classified exhibited as the main features be not aged and high alcohol percentage. The index of preference is positively correlated with the intensity of yellow color, wood flavor, sweetness and fruit aroma. There is a negative preference correlation with the acidity, the taste of alcohol and bitterness.
Resumo:
This work reports the optimization and method validation for sulfonamides (sulfamethazine, sulfaquinoxaline, sulfadimethoxine and sulfathiazole) in shrimp muscle using HPLC-UV. The sulfonamides were extracted with acetonitrile and acetic acid, and the extract cleaned up with a Strata SCX SPE cartridge prior to analysis. The method presented linearity in the range of 20-120 µg kg-1, good linear correlation (r > 0.99), and limits of quantification in the range of 4.7-20.2 µg kg-1. The recovery for shrimp muscles spiked with 50-150 µg kg-1 ranged from 63.2-108.0%. Precision and accuracy analysis showed acceptable relative standard deviation. Commercial shrimps were analyzed and sulfonamides don't were found above of the method limit of quantification.
Resumo:
A method based on enzymatic activities was developed using three enzymes (glycerokinase, glycerol-3-phosphate oxidase and peroxidase) and colorimetric detection for the determination of glycerol in biodiesel. The enzymatic conversion of glycerol produces H2O2 that is eliminated by the action of peroxidase, an oxygen acceptor and 4- aminoantipirine, producing water and a colored compound, which was analyzed. This method showed good linear correlation coefficient (r = 0.9937) in the concentration range of 4.95 x 10-5 to 3.96 x 10-4% (w/w) and had experimental limits of detection and quantitation of 7.10 x 10-6 and 2.10 x 10-5% (w/w), respectively.
Resumo:
Zn availability in Red Latossol (Rhodic Ferralsol) of different pH amended with different rates of sewage sludge was studied by the isotopic 65Zn L value method. Soil chemical properties were found to be altered by SS addition. Zn concentration and Zn derived from SS (ZnpfSS) in plant, and Zn phytoavailability (L value), were increased with increasing SS rates. The linear correlation coefficient of plant Zn with SS rates and with L value was significant at 1% probability. The L value proved an efficient method for predicting Zn phytoavailability in sewage sludge-amended soil with different pH under the soil conditions studied.
Resumo:
Hydrogels have been prepared by free-radical solution copolymerization of acrylamide and sodium acrylate (NaAc), with molar ratio ranging from 25/75 to 80/20, respectively, using methylene bisacrylamide as the crosslinking agent. A FTIR spectroscopy procedure to determine the acrylate/acrylamide ratio in these hydrogels was proposed based on absorbance at 1410 cm-1 (nCOO-) and 2940 cm-1 (nCH and nCH2). A straight line with a good linear correlation coefficient (0.998) was obtained by plotting the acrylate content (Ac%) versus relative absorbance (Arel = A1410/A2940). Results were confirmed by the amount of sodium cation released in acid medium determined by atomic absorption spectrometry.
Resumo:
AbstractMany well-established methods for determining the antioxidant capacities in several samples have been described in literature. However, DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) are the main two methods that utilize radicals as spectrophotometric probes for analysis. Nevertheless, these methods have certain limitations because of their slower kinetics, solvent polarity effects, the hydrophilicity and lipophilicity of the compounds, chemical costs, etc. In this study, a spectrophotometric method for determining the antioxidant capacity in beverages was developed based on an exploration of the cation radical derived from DEPD. This method was based on the oxidation of aromatic amines with Fe(III) ions at pH 4.0, which leads to their corresponding purple cation radicals (DEPD•+) with λmax values at 500 and 540 nm. The addition of an antioxidant after the formation of the radical leads to a reduction in color intensity that is proportional to the antioxidant concentration in the medium. Results obtained using this method were compared with the Folin-Ciocalteau, ABTS and DPPH methods in terms of applications in wines, teas, and infusions samples. Linear correlation analysis at a 95% confidence level was employed to compare the results, which were in good agreement with a correlation coefficient of r > 0.9000. Thus, the developed method was simple, accurate, and consistent with other assays for the determination of the total amount of phenolic compounds and antioxidant capacity.