22 resultados para Liberation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photogeneration of nitric oxide (NO) using laser flash photolysis was investigated for S-nitroso-glutathione (GSNO) and S-nitroso-N-acetylcysteine (NacySNO) at pH 6.4 (PBS/HCl) and 7.4 (PBS). Irradiation of S-nitrosothiol with light (lambda = 355 nm followed by absorption spectroscopy) resulted in the homolytic decomposition of NacySNO and GSNO to generate radicals (GS· and NacyS·) and NO. The release of NO from donor compounds measured with an ISO-Nometer apparatus was larger at pH 7.4 than pH 6.4. NacySNO was also incorporated into dipalmitoyl-phosphatidylcholine liposomes in the presence and absence of zinc phthalocyanine (ZnPC), a well-known photosensitizer useful for photodynamic therapy. Liposomes are usually used as carriers for hydrophobic compounds such as ZnPC. Inclusion of ZnPC resulted in a decrease in NO liberation in liposomal medium. However, there was a synergistic action of both photosensitizers and S-nitrosothiols resulting in the formation of other reactive species such as peroxynitrite, which is a potent oxidizing agent. These data show that NO release depends on pH and the medium, as well as on the laser energy applied to the system. Changes in the absorption spectrum were monitored as a function of light exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorhexidine, even at low concentrations, is toxic for a variety of eukaryotic cells; however, its effects on host immune cells are not well known. We evaluated in vitro chlorhexidine-induced cytotoxicity and its effects on reactive oxygen/nitrogen intermediate induction by murine peritoneal macrophages. Thioglycollate-induced cells were obtained from Swiss mice by peritoneal lavage with 5 ml of 10 mM phosphate-buffered saline, washed twice and resuspended (10(6) cells/ml) in appropriate medium for each test. Cell preparations contained more than 95% macrophages. The cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and the presence of hydrogen peroxide (H2O2) and nitric oxide (NO) by the horseradish peroxidase-dependent oxidation of phenol red and Griess reaction, respectively. The midpoint cytotoxicity values for 1- and 24-h exposures were 61.12 ± 2.46 and 21.22 ± 2.44 µg/ml, respectively. Chlorhexidine did not induce synthesis or liberation of reactive oxygen/nitrogen intermediates. When macrophages were treated with various sub-toxic doses for 1 h (1, 5, 10, and 20 µg/ml) and 24 h (0.5, 1, and 5 µg/ml) and stimulated with 200 nM phorbol myristate acetate (PMA) solution, the H2O2 production was not altered; however, the NO production induced by 10 µg/ml lipopolysaccharide (LPS) solution varied from 14.47 ± 1.46 to 22.35 ± 1.94 µmol/l and 13.50 ± 1.42 to 20.44 ± 1.40 µmol/l (N = 5). The results showed that chlorhexidine has no immunostimulating activity and sub-toxic concentrations did not affect the response of macrophages to the soluble stimulus PMA but can interfere with the receptor-dependent stimulus LPS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was to evaluate the production of cytokines, interferon-g (INF-g) and interleukin-10 (IL-10), in cultures of peripheral blood mononuclear cells (PBMC) from type 1 and type 2 diabetic patients and to correlate it with inadequate and adequate metabolic control. We studied 11 type 1 and 13 type 2 diabetic patients and 21 healthy individuals divided into two groups (N = 11 and 10) paired by sex and age with type 1 and type 2 diabetic patients. The PBMC cultures were stimulated with concanavalin-A to measure INF-g and IL-10 supernatant concentration by ELISA. For patients with inadequate metabolic control, the cultures were performed on the first day of hospitalization and again after intensive treatment to achieve adequate control. INF-g levels in the supernatants of type 1 diabetic patient cultures were higher compared to type 2 diabetic patients with adequate metabolic control (P < 0.001). Additionally, INF-g and IL-10 tended to increase the liberation of PBMC from type 1 and 2 diabetic patients with adequate metabolic control (P = 0.009 and 0.09, respectively). The increased levels of INF-g and IL-10 released from PBMC of type 1 and 2 diabetic patients with adequate metabolic control suggest that diabetic control improves the capacity of activation and maintenance of the immune response, reducing the susceptibility to infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mature fruit from the yellow mombin (Spondias mombin) was monitored for its respiration activity. Mature green fruit from the yellow mombin was stored in closed glass chambers and the concentration of oxygen and carbon dioxide at the end of a six hour respiration period was determined. At the same interval of time, the lid of the chamber was opened for air renewal. The increase in carbon dioxide and decrease in oxygen concentration demonstrated that the fruit was climacteric. The maximum liberation of CO2 54.2 mL Kg-1 h-1 and maximum absorption of O2 49.0 mL Kg-1 h-1 occurred 186 hours after the harvest which, obviously, represented the optimum fruit quality after the senescence process started. The respiratory quotient of fruit at a climacteric maximum was 1.11 representing the oxidation of carbohydrates. Total soluble solids increased from 9.1 °Brix (initial) to 13.7 °Brix (climacteric maximum) during maturation, while the total number of acids in the fruit decreased during maturation i.e. from 1.55% initially to 1.40% at pre-climacteric, 1.0% at climacteric maximum and 0.8% in the post-climacteric stage. A similar behaviour was observed in the case of ascorbic acid. There was a continuous decrease in chlorophyll and a continuous increase in the carotenoid content of fruit during maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main problem related to rice bran use is that it goes rancid right after its production. The objective of the present study was to apply a mathematical model to evaluate the kinetics of the lipase activity and hydrolytic rancidity of the raw rice bran (RRB), extruded rice bran (ERB), and parboiled rice bran (PRB) stored in low density polyethylene bags at room temperature for 180 days. Extrusion and parboiling were efficient in preventing free fatty acid formationin ERB and PRB.Extrusion reduced the velocity constant of lipase activity as compared to that of RRB while parboiling increased it, and both decreased the lipase activity after equilibrium from 150 days. The extrusion and parboiling treatments increased the velocity constants for the liberation of free fatty acids although the equilibrium was reached with reduced production of free fatty acids in relation to the production of raw rice bran after 150 days ofstorage. Extrusion proved the best treatment under the storage temperature conditions of rice bran from cultivar BRS Primavera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract The use of agroindustrial residues is an economical solution to industrial biotechnology. Coffee husk and pulp are abounding residues from coffee industry which can be used as substrates in solid state fermentation process, thus allowing a liberation and increase in the phenolic compound content with high added value. By employing statistical design, initial moisture content, pH value in the medium, and the incubation temperature were evaluated, in order to increase the polyphenol content in a process of solid state fermentation by Penicillium purpurogenum. The main phenolic compounds identified through HPLC in fermented coffee residue were chlorogenic acid, caffeic acid, and rutin. Data obtained through HPLC with the radical absorbance capacity assay suggest the fermented coffee husk and pulp extracts potential as a source of phenolic acids and flavonoids. Results showed good perspectives when using P. purpurogenum strain to enhance the liberation of phenolic compounds in coffee residues.