67 resultados para Land Supply


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrocyclis peruvianus (Lamarck, 1822) is a large terrestrial snail which is endemic in Chile. A detailed description of its shell structure, jaw, radula, palial cavity and reproductive system is presented here for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the diet of Astyanax paranae Eigenmann, 1914 in nine streams located in the Passa-Cinco River basin (upper Paraná River system) was performed to investigate the feeding habits of this species, check for possible spatial variations in diet and to investigate the influence of riparian vegetation in the composition of the diet. Stomach contents of 243 specimens were analyzed by the methods of relative frequency of occurrence and volume, and the diet was characterized by the alimentary index (AIi). The species showed insectivorous feeding habits, with a predominance of terrestrial and aquatic insects in the diet, varying by location. In most streams, resources of allochthonous origin were the most consumed. The participation of aquatic insects and terrestrial plants were high in most streams, while terrestrial insects and invertebrates were highest in streams with a greater presence of riparian forest. The two streams located draining pasture fields were the only places were A. paranae consumed algae and macrophyte fragments. These results were corroborated by the analysis of similarity (ANOSIM): the descriptor "percentage of riparian forest" was the highest environmental influence on the diet of A. paranae. The study shows that riparian forest percentage on the stream reach determines the species diet composition, but A. paranae is also able to gather enough food resources in a variety of severely degraded environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios - A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the results obtained in a control programme of schistosomiasis in Ravena (Sabará, Minas Gerais) between 1980 and 1992 are evaluated. Control measures used in this programme were: specific treatment of the people infected with Schistosoma mansoni at four year-intervals (1980/84/88) and the supply of tap water to 90% of the residences in 1980. A significant reduction of the prevalence (36.7% to 11.5%, p < 0.05) and of the intensity of the infection (228.9 eggs per gram of feces (epg), s = 3.7 to 60.3 epg, s = 3.5, p < 0.05) was observed. No cases of the severe form of the disease were diagnosed in the area. Factors independently associated with the infection were in 1980 daily sand extraction and the lack of tap water in residences and in 1992 daily sand extraction and fishing and weekly swimming. Concluding, the supply of tap water together with quadrennial treatments significantly diminished both the prevalence and intensity of the S. mansoni infection, with the additional gain of persistent low indices even after four-year intervals between the treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explore the effects of deforestation and resulting differences in vegetation and land cover on entomological parameters, such as anopheline species composition, abundance, biting rate, parity and entomological inoculation rate (EIR), three villages were selected in the Lower Caura River Basin, state of Bolívar, Venezuela. All-night mosquito collections were conducted between March 2008-January 2009 using CDC light traps and Mosquito Magnet(r) Liberty Plus. Human landing catches were performed between 06:00 pm-10:00 pm, when anophelines were most active. Four types of vegetation were identified. The Annual Parasite Index was not correlated with the type of vegetation. The least abundantly forested village had the highest anopheline abundance, biting rate and species diversity. Anopheles darlingi and Anopheles nuneztovari were the most abundant species and were collected in all three villages. Both species showed unique biting cycles. The more abundantly forested village of El Palmar reported the highest EIR. The results confirmed previous observations that the impacts of deforestation and resulting changes in vegetation cover on malaria transmission are complex and vary locally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na pesquisa apresentada, teve-se como objetivo verificar se a evolução da gestão ambiental se relaciona positivamente com a adoção de práticas de green supply chain management (GSCM) por empresas do setor eletroeletrônico do Brasil. Para fazer frente ao objetivo exposto, foi realizada uma pesquisa quantitativa, por meio de um levantamento survey, com cem empresas do setor eletroeletrônico brasileiro. Os dados coletados foram processados por meio de técnicas estatísticas descritivas, análise fatorial exploratória e modelagem de equações estruturais. Os resultados mais importantes da pesquisa foram: na amostra, práticas de GSCM orientadas para a recuperação dos investimentos das empresas, como a revenda de materiais inservíveis e outros resíduos, além da adequação à legislação e à auditoria ambiental, obtiveram médias elevadas; e a hipótese de pesquisa (H1) foi confirmada e considerada estatisticamente válida, indicando que a evolução da gestão ambiental influencia a adoção de práticas de GSCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A avaliação de terras é o processo que permite estimar o uso potencial da terra com base em seus atributos. Grande variedade de modelos analíticos pode ser usada neste processo. No Brasil, os dois sistemas de avaliação das terras mais utilizados são o Sistema de Classificação da Capacidade de Uso da Terra e o Sistema FAO/Brasileiro de Aptidão Agrícola das Terras. Embora difiram em vários aspectos, ambos exigem o cruzamento de inúmeras variáveis ambientais. O ALES (Automated Land Evaluation System) é um programa de computador que permite construir sistemas especialistas para avaliação de terras. As entidades avaliadas pelo ALES são as unidades de mapeamento, as quais podem ser de caráter generalizado ou detalhado. A área objeto desta avaliação é composta pelas microrregiões de Chapecó e Xanxerê, no Oeste catarinense, e engloba 54 municípios. Os dados sobre os solos e sobre as características da paisagem foram obtidos no levantamento de reconhecimento dos solos do Estado, na escala de 1:250.000. O presente estudo desenvolveu o sistema especialista ATOSC (Avaliação das Terras do Oeste de Santa Catarina) e, na sua construção, incluiu-se a definição dos requerimentos dos tipos de utilização da terra, bem como foi feita a subseqüente comparação destes com os atributos de cada unidade de mapeamento. Os tipos de utilização da terra considerados foram: feijão, milho, soja e trigo, em cultivos solteiros, sob condições de sequeiro e de manejo característicos destas culturas no Estado. As informações sobre os recursos naturais compreendem os atributos climáticos, de solos e das condições da paisagem que interferem na produção destas culturas. Para cada tipo de utilização da terra foram especificados, no ATOSC, o código, o nome e seus respectivos requerimentos de uso da terra. Os requerimentos de cada cultura foram definidos por uma combinação específica das características das terras selecionadas, que determina o nível de severidade de cada um deles em relação à cultura. Estabeleceram-se quatro níveis de severidade que indicam aumento do grau de limitação ou diminuição do potencial para determinado tipo de uso da terra, a saber: limitação nula ou ligeira (favorável); limitação moderada (moderadamente favorável), limitação forte (pouco favorável); e limitação muito forte (desfavorável). Na árvore de decisão, componente básico do sistema especialista, são implementadas as regras que permitirão o enquadramento das terras em classes de adequação definidas, baseado na qualidade dos requerimentos de acordo com o tipo de uso. O ATOSC facilitou o processo de comparação entre as características das terras das microrregiões de Chapecó e Xanxerê e os requerimentos de uso considerados, por permitir efetuar automaticamente a avaliação das terras, reduzindo, assim, o tempo gasto neste processo. As terras das microrregiões de Chapecó e Xanxerê foram enquadradas, em sua maior parte, nas classes de adequação pouco favorável (3) e desfavorável (4) para os cultivos considerados. Os principais fatores limitantes identificados nestas microrregiões foram a fertilidade natural e o risco de erosão, para o feijão e o milho, e condições de mecanização e risco de erosão, para a soja e o trigo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 13C natural abundance technique was applied to study C dynamics after land-use change from native savanna to Brachiaria, Pinus, and Eucalyptus in differently textured Cerrado Oxisols. But due to differences in the d13C signatures of subsoils under native savanna and under introduced species, C substitution could only be calculated based on results of cultivated soils nearby. It was estimated that after 20 years, Pinus C had replaced only 5 % of the native C in the 0-1.2 m layer, in which substitution was restricted to the top 0.4 m. Conversely, after 12 years, Brachiaria had replaced 21 % of Cerrado C to a depth of 1.2 m, where substitution decreased only slightly throughout the entire profile. The high d13C values in the subsoils of the cultivated sites led to the hypothesis that the natural vegetation there had been grassland rather than Cerrado sensu stricto, in spite of the comparable soil and site characteristics and the proximity of the studied sites. The hypothesis was tested using aerial photographs of 1964, which showed that the cultivated sites were located on a desiccated runoff head. The vegetation shift to a grass-dominated savanna formation might therefore have occurred in response to waterlogging and reduced soil aeration. A simple model was developed thereof, which ascribes the different Cerrado formations mainly to the plant-available water content and soil aeration. Soil fertility is considered of minor significance only, since at the studied native savanna sites tree density was independent of soil texture or nutrient status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responses of leaf senescence to P supply could constitute adaptive mechanisms for plant growth under P-limiting conditions. The aim of this study was to evaluate the effects of soil P supply on leaf senescence of common bean (Phaseolus vulgaris L.). Eight P levels, ranging from 5 to 640 mg kg-1 P, were applied to pots containing four bean plants of cultivar Carioca in 10 kg of an Oxic Haplustult soil. Attached leaves were counted weekly, abscised leaves were collected every other day, and seeds were harvested at maturity. The number of live leaves increased until 48 days after emergence (DAE) and decreased afterwards, irrespective of applied P levels. At lower applied P levels, the initial increase and the final decrease of leaf number was weak, whereas at higher applied P levels the leaf number increased intensively at the beginning of the growth cycle and decreased strongly after 48 DAE. Dry matter and P accumulated in senesced leaves increased as soil P levels increased until 61 DAE, but differences between P treatments narrowed thereafter. The greatest amounts of dry mass and P deposited by senesced leaves were observed at 48-54 DAE for high P levels, at 62-68 DAE for intermediate P levels and at 69-76 DAE for low P levels. These results indicate that soil P supply did not affect the stage of maximal leaf number and the beginning of leaf senescence of common bean plants, but the stage of greatest deposition of senesced leaves occurred earlier in the growth cycle as the soil P supply was raised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low phosphorus supply markedly limits leaf growth and genotypes able to maintain adequate leaf area at low P could adapt better to limited-P conditions. This work aimed to investigate the relationship between leaf area production of common bean (Phaseolus vulgaris) genotypes during early pod filling and plant adaptation to limited P supply. Twenty-four genotypes, comprised of the four growth habits in the species and two weedy accessions, were grown at two P level applied to the soil (20 and 80 mg kg-1) in 4 kg pots and harvested at two growth stages (pod setting and early pod filling). High P level markedly increased the leaf number and leaf size (leaf area per leaf), slightly increased specific leaf area but did not affect the net assimilation rate. At low P level most genotypic variation for plant dry mass was associated with leaf size, whereas at high P level this variation was associated primarily with the number of leaves and secondarily with leaf size, specific leaf area playing a minor role at both P level. Determinate bush genotypes presented a smaller leaf area, fewer but larger leaves with higher specific leaf area and lower net assimilation rate. Climbing genotypes showed numerous leaves, smaller and thicker leaves with a higher net assimilation rate. Indeterminate bush and indeterminate prostrate genotypes presented the highest leaf area, achieved through intermediate leaf number, leaf size and specific leaf area. The latter groups were better adapted to limited P. It is concluded that improved growth at low P during early pod filling was associated with common bean genotypes able to maintain leaf expansion through leaves with greater individual leaf area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrients are basically transported to the roots by mass flow and diffusion. The aim of this study was to quantify the contribution of these two mechanisms to the acquisition of macronutrients (N, P, K, Ca, Mg, and S) and cationic micronutrients (Fe, Mn, Zn, and Cu) by maize plants as well as xylem exudate volume and composition in response to soil aggregate size and water availability. The experiment was conducted in a greenhouse with samples of an Oxisol, from under two management systems: a region of natural savanna-like vegetation (Cerradão, CER) and continuous maize under conventional management for over 30 years (CCM). The treatments were arranged in a factorial [2 x (1 + 2) x 2] design, with two management systems (CER and CCM), (1 + 2) soil sifted through a 4 mm sieve and two aggregate classes (< 0.5 mm and 0.5 - 4.0 mm) and two soil matric potentials (-40 and -10 kPa). These were evaluated in a randomized block design with four replications. The experiment was conducted for 70 days after sowing. The influence of soil aggregate size and water potential on the nutrient transport mechanisms was highest in soil samples with higher nutrient concentrations in solution, in the CER system; diffusion became more relevant when water availability was higher and in aggregates < 0.5 mm. The volume of xylem exudate collected from maize plants increased with the decrease in aggregate size and the increased availability of soil water in the CER system. The highest Ca and Mg concentrations in the xylem exudate of plants grown on samples from the CER system were related to the high concentrations of these nutrients in the soil solution of this management system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water resource quality is a concern of today's society and, as a consequence, low pollutant wastewaters and sludges are being increasingly treated, resulting in continuous production of sewage sludge. Sewage sludge (SS) can be used as soil physical conditioner of agricultural or degraded lands, due to its organic C component. The objective of this research was to evaluate the long-term SS effects on soil physical quality of properties such as bulk density, porosity, permeability and water retention of degraded soils treated with annual SS applications. The SS rates were calculated according to the crop N demand. The field experiment consisted of three treatments: mineral fertilization, 10 and 20 Mg ha-1 of SS (once and twice the SS quantity to meet the maize N demand, respectively), in annual applications to the surface layer of a eutroferric Red Latosol. SS reduced bulk density, increased macroporosity and decreased microporosity after the third application, but did not significantly alter the soil permeability and physical quality as measured by the S index in the surface layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in agricultural production in the Brazilian Amazon region is mostly a result of the agricultural frontier expansion, into areas previously influenced by humans or of native vegetation. At the same time, burning is still used to clear areas in small-scale agricultural systems, leading to a loss of the soil productive capacity shortly after, forcing the opening of new areas. This study had the objective of evaluating the effect of soil preparation methods that involve plant residue shredding, left on the surface or incorporated to the soil, with or without chemical fertilization, on the soil chemical and biological properties. The experiment was conducted in 1995, in an experimental field of Yellow Latosol (Oxisol) of the Embrapa Amazônia Oriental, northeastern Pará (Brazil). The experiment was arranged in randomized blocks, in a 2x6 factorial design, with two management systems and six treatments evaluated twice. The management systems consisted of rice (Oriza sativa), followed by cowpea (Vigna unguiculata) with manioc (Manihot esculenta). In the first system the crops were planted in two consecutive cycles, followed by a three-year fallow period (natural regrowth); the second system consisted of one cultivation cycle and was left fallow for three years. The following treatments were applied to the secondary forest vegetation: slash and burn, fertilized with NPK (Q+NPK); slash and burn, without fertilizer NPK (Q-NPK); cutting and shredding, leaving the residues on the soil surface, fertilized with NPK (C+NPK); cutting and shredding, leaving residues on the soil surface, without fertilizer (C-NPK); cutting and shredding, with residue incorporation and fertilized with NPK (I+NPK); cutting and shredding, with residue incorporation and without NPK fertilizer (I-NPK). The soil was sampled in the rainier season (April 2006) and in the drier season (September 2006), in the 0-0.1 m layer. From each plot, 10 simple samples were collected in order to generate a composite sample. In the more intensive management system the contents of microbial C (Cmic) and microbial N (Nmic) were higher, while the C (Corg) level was higher in the less intensive system. The treatments with highest Cmic and Nmic levels were those with cutting, shredding and distribution of biomass on the soil surface. Under both management systems, the chemical characteristics were in ranges that classify the soil as little fertile, although P and K (in the rainy season) were higher in the less intensive management system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure) and ammonia-oxidizing Archaea (richness and community composition) were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009) from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old), agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE) using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA) of Archaea (306 sequences), the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366), followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715), crops (H' = 1.4613; D = 0.3309) and secondary forest (H' = 0.8633; D = 0.5405). All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 %) previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a) young secondary forest; b) old secondary forest; c) forest; d) pasture; e) cropping, and f) agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m) as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth), the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.