29 resultados para LEUCINE-ZIPPER
Resumo:
Extraction and isoenzyme analysis of four isolates of Arthrobotrys including A. musiformis, A. robusta and A. conoides were conducted. Among the 14 enzymes studied by starch gel electrophoresis, using morpholine-citrate as gel/electrode buffer, the following nine enzymes showed interpretable banding patterns: a-esterase, fumarase, hexokinase, isocitrate dehydrogenase, leucine aminopeptidase, malate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucomutase and phosphoglucoisomerase. All isolates studied displayed typical isoenzyme phenotypes for each species. Two isolates of A. conoides differed in their a-isoesterase banding patterns, but no differences were observed for the other enzymes. The assay was satisfactory for enzyme extraction and resolution of Arthrobotrys and could be used in future taxonomic and genetic studies of this organism
Resumo:
The cornea is a curved and transparent structure that provides the initial focusing of a light image into the eye. It consists of a central stroma that constitutes 90% of the corneal depth, covered anteriorly with epithelium and posteriorly with endothelium. Its transparency is the result of the regular spacing of collagen fibers with remarkably uniform diameter and interfibrillar space. Corneal collagen is composed of heterotypic fibrils consisting of type I and type V collagen molecules. The cornea also contains unusually high amounts of type VI collagen, which form microfibrillar structures, FACIT collagens (XII and XIV), and other nonfibrillar collagens (XIII and XVIII). FACIT collagens and other molecules, such as leucine-rich repeat proteoglycans, play important roles in modifying the structure and function of collagen fibrils.Proteoglycans are macromolecules composed of a protein core with covalently linked glycosaminoglycan side chains. Four leucine-rich repeat proteoglycans are present in the extracellular matrix of corneal stroma: decorin, lumican, mimecan and keratocan. The first is a dermatan sulfate proteoglycan, and the other three are keratan sulfate proteoglycans. Experimental evidence indicates that the keratan sulfate proteoglycans are involved in the regulation of collagen fibril diameter, and dermatan sulfate proteoglycan participates in the control of interfibrillar spacing and in the lamellar adhesion properties of corneal collagens. Heparan sulfate proteoglycans are minor components of the cornea, and are synthesized mainly by epithelial cells. The effect of injuries on proteoglycan synthesis is discussed.
Resumo:
Biglycan and decorin are small leucine-rich proteoglycans that play several biological and structural roles in different tissues and organs. Several reports have indicated that biglycan participates in odontoblast and ameloblast differentiation and in the calcification process. In the present study we show that the expression of biglycan changes from within the ameloblasts and odontoblasts to the extracellular space according to the stage of animal development. In predentin and in the pulp space, however, biglycan was continually expressed throughout the period of investigation. In contrast, decorin was absent in odontoblasts and in ameloblasts and was exclusively expressed in predentin throughout the period of observation. In young rats, however, decorin was expressed in the extracellular spaces of the pulp, where it was concentrated mainly in the peripheral pulp.
Resumo:
Proteoglycan and glycosaminoglycan content was analyzed in a model of rat mammary carcinoma to study the roles of these compounds in tumorigenesis. Hyaluronic acid and proteoglycans bearing chondroitin and/or dermatan sulfate chains were detected in solid tumors obtained after subcutaneous inoculation of Walker 256 rat carcinoma cells. About 10% of sulfated glycosaminoglycan chains corresponded to heparan sulfate. The small leucine-rich proteoglycan, decorin, was identified as one of the proteoglycans, in addition to others of higher molecular weight, by cross-reaction with an antiserum raised against pig laryngeal decorin and by N-terminal amino acid sequencing. Decorin was separated from other proteoglycans by hydrophobic chromatography and its complete structure was determined. It has a molecular weight of about 85 kDa and a dermatan chain of 45 kDa with 4-sulfated disaccharides. After degradation of the glycosaminoglycan chain, three core proteins of different molecular weight (36, 46 and 56 kDa) were identified. The presence of hyaluronic acid and decorin has been reported in a variety of tumors and tumor cells. In the Walker 256 mammary carcinoma model, hyaluronic acid may play an important role in tumor progression, since it provides a more hydrated extracellular matrix. On the other hand, decorin, which is expressed by stromal cells, represents a host defense response to tumor growth.
Resumo:
Our objective was to measure maternal plasma and amniotic fluid amino acid concentrations in pregnant women diagnosed as having fetuses with gastroschisis in the second trimester of pregnancy. Twenty-one pregnant women who had fetuses with gastroschisis detected by ultrasonography (gastroschisis group) in the second trimester and 32 women who had abnormal triple screenings indicating an increased risk for Down syndrome but had healthy fetuses (control group) were enrolled in the study. Amniotic fluid was obtained by amniocentesis, and maternal plasma samples were taken simultaneously. The chromosomal analysis of the study and control groups was normal. Levels of free amino acids and non-essential amino acids were measured in plasma and amniotic fluid samples using EZ:fast kits (EZ:fast GC/FID free (physiological) amino acid kit) by gas chromatography (Focus GC AI 3000 Thermo Finnigan analyzer). The mean levels of essential amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine) and non-essential amino acids (alanine, glycine, proline, and tyrosine) in amniotic fluid were found to be significantly higher in fetuses with gastroschisis than in the control group (P < 0.05). A significant positive correlation between maternal plasma and amniotic fluid concentrations of essential and nonessential amino acids was found only in the gastroschisis group (P < 0.05). The detection of significantly higher amino acid concentrations in the amniotic fluid of fetuses with a gastroschisis defect than in healthy fetuses suggests the occurrence of amino acid malabsorption or of amino acid leakage from the fetus into amniotic fluid.
Resumo:
Our objective was to characterize the modulation of the activity of Saccharomyces cerevisiae alkaline phosphatases (ALPs) by classic inhibitors of ALP activity, cholesterol and steroid hormones, in order to identify catalytic similarities between yeast and mammalian ALPs. S. cerevisiae expresses two ALPs, coded for by the PHO8 and PHO13 genes. The product of the PHO8 gene is repressible by Pi in the medium. ALP activity from yeast (grown in low or high phosphate medium) homogenates was determined with p-nitrophenylphosphate as substrate, pH 10.4 (lPiALP or hPiALP, respectively). Activation of hPiALP was observed with 5 mM L-amino acids (L-homoarginine _ 186%, L-leucine _ 155% and L-phenylalanine - 168%) and with 1 mM levamisole (122%; percentage values, in comparison to control, of recovered activity). EDTA (5 mM) and vanadate (1 mM) distinctly inhibited hPiALP (2 and 20%, respectively). L-homoarginine (5 mM) had a lower activating effect on lPiALP (166%) and was the strongest hPiALP activator. Corticosterone (5 mM) inhibited hPiALP to 90%, but no effect was observed in low phosphate medium. Cholesterol, ß-estradiol and progesterone also had different effects on lPiALP and hPiALP. A concentration-dependent activation of lPiALP minus hPiALP was evident with all three compounds, most especially with ß-estradiol and cholesterol. These results do not allow us to identify similarities of the behavior of S. cerevisiae ALPs and any of the mammalian ALPs but allow us to raise the hypothesis of differential regulation of S. cerevisiae ALPs by L-homoarginine, ß-estradiol and cholesterol and of using these compounds to discriminate between S. cerevisiae lPiALP and hPiALP.
Resumo:
The pathogenesis of chagasic cardiomyopathy is not completely understood, but it has been correlated with parasympathetic denervation (neurogenic theory) and inflammatory activity (immunogenic theory) that could affect heart muscarinic acetylcholine receptor (mAChR) expression. In order to further understand whether neurogenic and/or immunogenic alterations are related to changes in mAChR expression, we studied two models of Trypanosoma cruzi infection: 1) in 3-week-old male Sprague Dawley rats chronically infected with T. cruzi and 2) isolated primary cardiomyocytes co-cultured with T. cruzi and peripheral blood mononuclear cells (PBMC). Using [³H]-quinuclidinylbenzilate ([³H]-QNB) binding assays, we evaluated mAChR expression in homogenates from selected cardiac regions, PBMC, and cultured cardiomyocytes. We also determined in vitro protein expression and pro-inflammatory cytokine expression in serum and cell culture medium by ELISA. Our results showed that: 1) mAChR were significantly (P < 0.05) up-regulated in right ventricular myocardium (means ± SEM; control: 58.69 ± 5.54, N = 29; Chagas: 72.29 ± 5.79 fmol/mg, N = 34) and PBMC (control: 12.88 ± 2.45, N = 18; Chagas: 20.22 ± 1.82 fmol/mg, N = 19), as well as in cardiomyocyte transmembranes cultured with either PBMC/T. cruzi co-cultures (control: 24.33 ± 3.83; Chagas: 43.62 ± 5.08 fmol/mg, N = 7 for both) or their conditioned medium (control: 37.84 ± 3.84, N = 4; Chagas: 54.38 ± 6.28 fmol/mg, N = 20); 2) [³H]-leucine uptake was increased in cardiomyocytes co-cultured with PBMC/T. cruzi-conditioned medium (Chagas: 21,030 ± 2321; control 10,940 ± 2385 dpm, N = 7 for both; P < 0.05); 3) plasma IL-6 was increased in chagasic rats, IL-1β, was increased in both plasma of chagasic rats and in the culture medium, and TNF-α level was decreased in the culture medium. In conclusion, our results suggest that cytokines are involved in the up-regulation of mAChR in chronic Chagas disease.
Resumo:
Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries. We report here on a novel point mutation in GJB2, p.L76P (c.227C>T), in compound heterozygosity with a c.35delG mutation, in two Brazilian sibs, one presenting mild and the other profound nonsyndromic neurosensorial hearing impairment. Their father, who carried a wild-type allele and a p.L76P mutation, had normal hearing. The mutation leads to the substitution of leucine (L) by proline (P) at residue 76, an evolutionarily conserved position in Cx26 as well as in other connexins. This mutation is predicted to affect the first extracellular domain (EC1) or the second transmembrane domain (TM2). EC1 is important for connexon-connexon interaction and for the control of channel voltage gating. The segregation of the c.227C>T (p.L76P) mutation together with c.35delG in this family indicates a recessive mode of inheritance. The association between the p.L76P mutation and hearing impairment is further supported by its absence in a normal hearing control group of 100 individuals, 50 European-Brazilians and 50 African-Brazilians.
Resumo:
We investigated whether Ca2+/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 μg/L), and Ca2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca2+]i transients, CaMKIIδB and CaN were evaluated by the Lowry method, [³H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 μg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 μg/L) significantly increased the amplitude of spontaneous [Ca2+]i transients, the total protein content, cell size, and [³H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca2+ chelator. The increases in protein content, cell size and [³H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδB by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca2+]i, CaMKIIδB and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca2+/CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α.
Resumo:
Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [³H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy.
Resumo:
Maple syrup urine disease (MSUD) is an autosomal recessive disease associated with high levels of branched-chain amino acids. Children with MSUD can present severe neurological damage, but liver transplantation (LT) allows the patient to resume a normal diet and avoid further neurological damage. The use of living related donors has been controversial because parents are obligatory heterozygotes. We report a case of a 2-year-old child with MSUD who underwent a living donor LT. The donor was the patient's mother, and his liver was then used as a domino graft. The postoperative course was uneventful in all three subjects. DNA analysis performed after the transplantation (sequencing of the coding regions of BCKDHA, BCKDHB, andDBT genes) showed that the MSUD patient was heterozygous for a pathogenic mutation in the BCKDHB gene. This mutation was not found in his mother, who is an obligatory carrier for MSUD according to the family history and, as expected, presented both normal clinical phenotype and levels of branched-chain amino acids. In conclusion, our data suggest that the use of a related donor in LT for MSUD was effective, and the liver of the MSUD patient was successfully used in domino transplantation. Routine donor genotyping may not be feasible, because the test is not widely available, and, most importantly, the disease is associated with both the presence of allelic and locus heterogeneity. Further studies with this population of patients are required to expand the use of related donors in MSUD.
Resumo:
One third of the world's fishing produce is not directly used for human consumption. Instead, it is used for making animal food or is wasted as residue. It would be ideal to use the raw material thoroughly and to recover by-products, preventing the generation of residues. With the objectives of increasing the income and the production of the industry, as well as minimizing environmental and health problems from fish residue, chemical silage from Tilapia (Oreochromis niloticus) processing residues was developed after homogenization and acidification of the biomass with 3% formic acid: propionic, 1:1, addition of antioxidant BHT and maintenance of pH at approximately 4.0. Analyses to determine the moisture, protein, lipids and ash were carried out. The amino acids were examined in an auto analyzer after acid hydrolysis, except for the tryptophan which was determined through colorimetry. The tilapia silage presented contents that were similar to or higher than the FAO standards for all essential amino acids, except for the tryptophan. The highest values found were for glutamic acid, lysine and leucine. The results indicate a potential use of the silage prepared from the Nile tilapia processing residue as a protein source in the manufacturing of fish food.
Resumo:
Considering that annatto seeds are rich in protein, the present work aimed to evaluate the biological quality of this nutrient in the meal residue originating from annatto seed processing. We determined the general composition, mineral levels, amino acid composition and chemical scores, antinutritional factors, and protein quality using biological assays. The following values were obtained: 11.50% protein, 6.74% moisture, 5.22% ash, 2.22% lipids, 42.19% total carbohydrates and 28.45% fiber. The residue proved to be a food rich in fiber and also a protein source. Antinutritional factors were not detected. The most abundant amino acids were lysine, phenylalanine + tyrosine, leucine and isoleucine. Valine was the most limiting amino acid (chemical score 0.22). The protein quality of the seed residue and the isolated protein showed no significant differences. The biological value was lower than that of the control protein but higher than that found in other vegetables. Among the biochemical analyses, only creatinine level was decreased in the two test groups compared to the control group. Enzyme tests did not indicate liver toxicity. The results showed favorable aspects for the use of annatto seed residue in the human diet, meriting further research.
Resumo:
Chemical composition and nutritive value of hot pepper seeds (Capsicum annuum) grown in Northeast Region of China were investigated. The proximate analysis showed that moisture, ash, crude fat, crude protein and total dietary fiber contents were 4.48, 4.94, 23.65, 21.29 and 38.76 g/100 g, respectively. The main amino acids were glutamic acid and aspartic acid (above 2 g/100 g), followed by histidine, phenylalanine, lysine, arginine, cysteine, leucine, tryptophan, serine, glycine, methionine, threonine and tyrosine (0.8-2 g/100 g). The contents of proline, alanine, valine and isoleucine were less than 0.8 g/100 g. The fatty acid profile showed that linoleic acid, palmitic acid, oleic acid, stearic acid and linolenic acid (above 0.55 g/100 g) as the most abundant fatty acids followed lauric acid, arachidic acid, gondoic acid and behenic acid (0.03-0.15 g/100 g). Analyses of mineral content indicated that the most abundant mineral was potassium, followed by magnesium, calcium, iron, zinc, sodium and manganese. The nutritional composition of hot pepper seeds suggested that they could be regarded as good sources of food ingredients and as new sources of edible oils.