21 resultados para LEAFLETS
Resumo:
This work quantifies two important epidemiological features of the bean (Phaseolus vulgaris)/Phaeoisariopsis griseola pathosystem. The first is the effect of the number of nights of leaf wetness on infection efficiency. Infection efficiency was below 10% when inoculated leaflets were exposed to less than two nights of leaf wetness. Optimum infection efficiencies were obtained after three to four nights of leaf wetness, at about 50%. Further nights of leaf wetness did not increase the infection efficiency. The second feature quantified is the relative rate of leaflet defoliation for varying levels of angular leaf spot severity. It increased with disease severity according to a logarithm-like curve, and a relative rate of 0.23 day-1 was estimated for a severity of 18%. The implications of these results on the disease epidemiology are discussed.
Resumo:
A diagrammatic scale to assess soybean (Glycine max) rust severity, caused by the fungus Phakopsora pachyrhizi, was developed in this study. Leaflets showing different severity levels were collected for determination of the minimum and maximum severity limits; intermediate levels were determined according to "Weber-Fechner's stimulus-response law". The proposed scale showed the levels of 0.6; 2; 7; 18; 42, and 78.5%. Scale validation was performed by eight raters (four inexperienced and four experienced), who estimated the severity of 44 soybean leaflets showing rust symptoms, with and without the use of the scale. Except for rater number eight, all showed a tendency to overestimate severity without the aid of the diagrammatic scale. With the scale, the raters obtained better accuracy and precision levels, although the tendency to overestimate was maintained. Experienced raters were more accurate and precise than inexperienced raters, and assessment improvements with the use of the scale were more significant for inexperienced raters.
Resumo:
ABSTRACT In experiments conducted in a growth chamber, the chronological time and the accumulated degree-days were determined for the duration of incubation, latent and infectious periods of Phakopsora pachyrhizi cultivars BRSGO 7560 and BRS 246 RR. Detached soybean leaflets were placed in gerbox-type acrylic boxes and inoculated with 20 x 103 uredospores/mL. The study was conducted at 12-h photoperiod and temperatures of 10ºC, 15ºC, 22ºC, 25ºC and 30°C for 30 days. Lesions and uredia/cm2were evaluated and the number of uredia per lesion was quantified after the beginning of sporulation. The sporulation potential was also quantified for cultivars BRSGO 7560 and BRS 246 RR. The steps of the infection process can be quantified based on both the chronological time and the accumulated heat. The cultivar BRSGO 7560 produced 4,012.8 spores/cm2 and BRS 246 RR, 7,348.4 uredospores/cm2. The largest number of uredia was produced at 25ºC in both cultivars; however, BRS 246 RR presented 372.7 uredia/cm2 and BRSGO 7560, 231.6 uredia/cm2. At 10ºC and 30°C, leaf infection did not occur in both cultivars.
Resumo:
This study was carried out to investigate the efficiency of several herbicides under field conditions, by post-emergence application onto the entire area, their effect on the control of weeds in young coffee plantations and commercial coffee and bean intercropping system, as well as on both crops. Seedlings of Coffea arabica cv. Red Catuaí with four to six leaf pairs were transplanted to the field and treated according to conventional agronomic practices. A bean and coffee intercropping system was established by sowing three lines of beans in the coffee inter-rows. At the time the herbicides were sprayed, the coffee plants had six to ten leaf pairs; the bean plants, three leaflets; and the weeds were at an early development stage. Fluazifop-p-butyl and clethodim were selective for coffee plants and controlled only Brachiaria plantaginea and Digitaria horizontalis efficiently. Broad-leaved weeds (Amaranthus retroflexus, Bidens pilosa, Coronopus didymus, Emilia sonchifolia, Galinsoga parviflora, Ipomoea grandifolia, Lepidium virginicum, and Raphanus raphanistrum) were controlled with high efficiency by sole applications of fomesafen, flazasulfuron, and oxyfluorfen, except B. pilosa, C. didymus, and R. raphanistrum for oxyfluorfen. Sequential applications in seven-day intervals of fomesafen + fluazifop-p-butyl, or clethodim, and two commercial mixtures of fomesafen + fluazifop-p-butyl simultaneously controlled both types of weed. Cyperus rotundus was only controlled by flazasulfuron. Except for fluazifop-p-butyl and clethodim, all herbicide treatments caused only slight injuries on younger coffee leaves. However, further plant growth was not impaired and coffee plant height and stem diameter were therefore similar in the treatments, as evaluated four months later. Fomesafen, fluazifop-p-butyl, and clethodim, at sole or sequential application, and the commercial mixtures of fomesafen + fluazifop-p-butyl were also highly selective for bean crop; thus at doses recommended for bean crop, these herbicides may be applied to control weeds in coffee and bean intercropping systems by spraying the entire area.
Resumo:
Lactofen is a diphenylether herbicide recommended to control broad-leaved weeds in soybean (Glycine max) fields and its mechanism of action is the inhibition of protoporphyrinogen-IX oxidase (Protox), which acts in the chlorophyll biosynthesis. This inhibition results in an accumulation of protoporphyrin-IX, which leads to the production of reactive oxygen species (ROS) that cause oxidative stress. Consequently, spots, wrinkling and leaf burn may occur, resulting in a transitory crop growth interruption. However, nitric oxide (NO) acts as an antioxidant in direct ROS scavenging. Thus, the aim of this work was to verify, through phytometric and biochemical evaluations, the protective effect of NO in soybean plants treated with the herbicide lactofen. Soybean plants were pre-treated with different levels of sodium nitroprusside (SNP), a NO-donor substance, and then sprayed with 168 g a.i. ha-1 lactofen. Pre-treatment with SNP was beneficial because NO decreased the injury symptoms caused by lactofen in young leaflets and kept low the soluble sugar levels. Nevertheless, NO caused slower plant growth, which indicates that further studies are needed in order to elucidate the action mechanisms of NO in signaling the stress caused by lactofen in soybean crop.
Resumo:
(Morphological cladistic analysis of Pseudobombax Dugand (Malvaceae, Bombacoideae) and allied genera). Pseudobombax Dugand belongs to the family Malvaceae subfamily Bombacoideae and aggregates 29 species restricted to the Neotropics. A morphological cladistic analysis of Pseudobombax and allied genera was carried out to test the monophyly of the genus and to provide hypotheses on its phylogeny. Parsimony analyses were based on 40 morphological characters and 28 species, 14 belonging to Pseudobombax and 14 to other species of Bombacoideae, Matisieae (Malvoideae) and Ochromeae. Nine most parsimonious trees (144 steps, ci 0.40, ri 0.67) were produced when 10 multistate characters were taken as ordered while only two most parsimonious trees (139 steps, ci 0.41, ri 0.67) were obtained when all characters were considered as unordered. Pseudobombax monophyly had moderate bootstrap support, appearing as sister to a clade composed of the genera Bombacopsis Pittier and Pachira Aubl., or to the genus Bombax L. according to the analysis. The petiole widened at the apex and the leaflets not jointed to the petiole are probably synapomorphies of Pseudobombax. Three main clades were found in the genus: one characterised by petiolulated leaflets and 5-angular fruits, the other by pubescent leaves and calyx, and the other by reduction of the number of leaflets. The latter includes species endemic to the Brazilian semi-arid region also characterised by the absence of phalanges in the androecium. Interspecific affinities in Pseudobombax as well as the morphological evolution in Bombacoideae are discussed.