33 resultados para LDL-Receptor Related Proteins
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1) which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.
Resumo:
G protein-coupled receptor (GPCR) activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs). Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.
Resumo:
Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD), the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the e4 allele of the apolipoprotein E (APOE) gene (on chromosome 19) is the major susceptibility locus for the most common late onset AD (LOAD). Serotonin (5-hydroxytryptamine or 5-HT) is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT) gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s) of this 5-HTT gene-linked polymorphic region (5-HTTLPR) is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.
Resumo:
Prions are an unconventional form of infectious agents composed only of protein and involved in transmissible spongiform encephalopathies in humans and animals. The infectious particle is composed by PrPsc which is an isoform of a normal cellular glycosyl-phosphatidylinositol (GPI) anchored protein, PrPc, of unknown function. The two proteins differ only in conformation, PrPc is composed of 40% a helix while PrPsc has 60% ß-sheet and 20% a helix structure. The infection mechanism is trigged by interaction of PrPsc with cellular prion protein causing conversion of the latter's conformation. Therefore, the infection spreads because new PrPsc molecules are generated exponentially from the normal PrPc. The accumulation of insoluble PrPsc is probably one of the events that lead to neuronal death. Conflicting data in the literature showed that PrPc internalization is mediated either by clathrin-coated pits or by caveolae-like membranous domains. However, both pathways seem to require a third protein (a receptor or a prion-binding protein) either to make the connection between the GPI-anchored molecule to clathrin or to convert PrPc into PrPsc. We have recently characterized a 66-kDa membrane receptor which binds PrPc in vitro and in vivo and mediates the neurotoxicity of a human prion peptide. Therefore, the receptor should have a role in the pathogenesis of prion-related diseases and in the normal cellular process. Further work is necessary to clarify the events triggered by the association of PrPc/PrPsc with the receptor.
Resumo:
Abnormal production of interferon alpha (IFN-a) has been found in certain autoimmune diseases and can be also observed after prolonged therapy with IFN-a. IFN-a can contribute to the pathogenesis of allograft rejection in bone marrow transplants. Therefore, the development of IFN-a inhibitors as a soluble receptor protein may be valuable for the therapeutic control of these diseases. We have expressed two polypeptides encoding amino acids 93-260 (P1) and 261-410 (P2) of the extracellular domain of subunit 1 of the interferon-a receptor (IFNAR 1-EC) in E. coli. The activities of the recombinant polypeptides and of their respective antibodies were evaluated using antiproliferative and antiviral assays. Expression of P1 and P2 polypeptides was achieved by transformation of cloned plasmid pRSET A into E. coli BL21(DE3)pLysS and by IPTG induction. P1 and P2 were purified by serial sonication steps and by gel filtration chromatography with 8 M urea and refolded by dialysis. Under reducing SDS-PAGE conditions, the molecular weight of P1 and P2 was 22 and 17 kDa, respectively. Polyclonal anti-P1 and anti-P2 antibodies were produced in mice. P1 and P2 and their respective polyclonal antibodies were able to block the antiproliferative activity of 6.25 nM IFN-aB on Daudi cells, but did not block IFN-aB activity at higher concentrations (>6.25 nM). On the other hand, the polypeptides and their respective antibodies did not inhibit the antiviral activity of IFN-aB on Hep 2/c cells challenged with encephalomyocarditis virus.
Resumo:
Radiologic breast density is one of the predictive factors for breast cancer and the extent of the density is directly related to postmenopause. However, some patients have dense breasts even during postmenopause. This condition may be explained by the genes that codify for the proteins involved in the biosynthesis, as well as the activity and metabolism of steroid hormones. They are polymorphic, which could explain the variations of individual hormones and, consequently, breast density. The constant need to find markers that may assist in the primary prevention of breast cancer as well as in selecting high risk patients motived this study. We determined the influence of genetic polymorphism of CYP17 (cytochrome P450c17, the gene involved in steroid hormone biosynthesis), GSTM1 (glutathione S-transferase M1, an enzyme involved in estrogen metabolism) and PROGINS (progesterone receptor), for association with high breast density. One hundred and twenty-three postmenopausal patients who were not on hormone therapy and had no clinical or mammographic breast alterations were included in the present study. The results of this study reveal that there was no association between dense breasts and CYP17 or GSTM1. There was a trend, which was not statistically significant (P = 0.084), towards the association between PROGINS polymorphism and dense breasts. However, multivariate logistic regression showed that wild-type PROGINS and mutated CYP17, taken together, resulted in a 4.87 times higher chance of having dense breasts (P = 0.030). In conclusion, in the present study, we were able to identify an association among polymorphisms, involved in estradiol biosyntheses as well as progesterone response, and radiological mammary density.
Resumo:
Quinoa is considered a pseudocereal with proteins of high biological value, carbohydrates of low glycemic index, phytosteroids, and omega-3 and 6 fatty acids that bring benefits to the human health. The purpose of this study was to investigate the effects of quinoa on the biochemical and anthropometric profile and blood pressure in humans, parameters for measuring risk of cardiovascular diseases. Twenty-two 18 to 45-year-old students were treated daily for 30 days with quinoa in the form of a cereal bar. Blood samples were collected before and after 30 days of treatment to determine glycemic and biochemical profile of the group. The results indicated that quinoa had beneficial effects on part of the population studied since the levels of total cholesterol, triglycerides, and LDL-c showed reduction. It can be concluded that the use of quinoa in diet can be considered beneficial in the prevention and treatment of risk factors related to cardiovascular diseases that are among the leading causes of death in today's globalized world. However, further studies are needed to prove the benefits observed.
Resumo:
In the present study, we have analyzed by sodium docecyl sulphate - polyacrilamide gel electrophoresis (SDS-PAGE), immunoblotting and Concanavalin A blotting (Con A blotting) proteins of membrane fractions and soluble fractions obtained from Giardia duodenalis trophozoites of two axenic strains isolated in Brazil from a symptomatic (BTU-11) and an asymptomatic patient (BTU-10), as compared to the reference strain Portland 1. Both Brazilian strains showed a complex and homogeneous electrophoretic pattern of proteins, but some differences could be observed. Several glycoproteins were detected, particularly the proteins of 81, 72, 59 kDa and the protein of 62 kDa in the membrane proteins and cytosol, respectively. Many antigenic components were revealed by anti-Giardia rabbit IgG antibodies in the immunoblotting analysis. Among these components, the membrane protein of 32 kDa and the cytosol protein of 30 kDa could be related to giardin, as previously demonstrated.
Resumo:
Epstein-Barr virus (EBV)-related post-transplant lymphoproliferative disease (PTLD) is one of the most serious complications associated with solid organ and hematopoietic stem cell transplantation. PTLD is most frequently seen with primary EBV infection post-transplant, a common scenario for pediatric solid organ recipients. Risk factors for infection or reactivation of EBV following solid organ transplant are stronger immunosuppressive therapy regimens, and being seronegative for receptor. For hematopoietic stem cell transplantation, the risk factors relate to the type of transplant, human leukocyte antigen disparity, the use of stronger immunosuppressants, T-cell depletion, and severe graft-versus-host disease. Mortality is high, and most frequent in patients who develop PTLD in the first six months post-transplant. The primary goal of this article is to provide an overview of the clinical manifestations, diagnosis, accepted therapies, and management of EBV infection in transplant recipients, and to suggest that the adoption of monitoring protocols could contribute to a reduction in related complications.
Resumo:
Receptors for interleukin 2 (IL-2) esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta]) chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s) and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.
Resumo:
Many blood feeders use adenine nucleotides as cues for locating blood meal. Structure-activity relationship of adenine nucleotides as phagostimulants varies between closely-related species of blood feeders. It is suggested that a preexisting diverse pool of nucleotide-binding proteins present in all living cells, serves as a source of receptor proteins for the gustatory receptors involved in blood detection. It is proposed that the selection of any such nucleotide-binding protein is random.
Resumo:
Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44) identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger) than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.
Resumo:
SEN virus (SENV) is a circular, single stranded DNA virus that has been first characterized in the serum of a human immunodeficiency virus type 1 (HIV-1)-infected patient. Eight genotypes of SENV (A-H) have been identified and further recognized as variants of TT virus (TTV) in the family Circoviridae. Here we describe the first genomic characterization of a SENV isolate (5-A) from South America. Using 'universal' primers, able to amplify most, if not all, TTV/SENV genotypes, a segment of > 3 kb was amplified by polymerase chain reaction from the serum of an HIV-1 infected patient. The amplicon was cloned and a 3087-nucleotide sequence was determined, that showed a high (85%) homology with the sequence of the Italian isolate SENV-F. Proteins encoded by open reading frames (ORFs) 1 to 4 consisted of 758, 129, 276, and 267 amino acids, respectively. By phylogenetic analysis, isolate 5-A was classified into TTV genotype 19 (phylogenetic group 3), together with SENV-F and TTV isolate SAa-38.
Resumo:
Thymus regression upon stressing stimuli, such as infectious diseases, is followed by organ reconstitution, paralleling its development in ontogeny. A narrow window of thymus development was here studied, encompassing the pro-T lymphoid precursor expansion during specification stages, by the use of epidermal growth factor plus insulin (INS) in murine fetal thymus organ cultures. Aiming to disclose signaling pathways related to these stages, cultured thymus lobes had their RNA extracted, for the search of transcripts differentially expressed using RNAse protection assays and reverse transcriptase-polymerase chain reactions. We found no difference that could explain INS-driven thymocyte growth, in the pattern of transcripts for death/proliferation mediators, or for a series of growth factor receptors and transcriptional regulators known as essential for thymus development. Thymocyte suspensions from cultured lobes, stained for phenotype analysis by fluorescence activated cell sorting, showed a decreased staining for Notch1 protein at cell surfaces upon INS addition. We analyzed the expression of Notch-related elements, and observed the recruitment of a specific set of transcripts simultaneous and compatible with INS-driven thymocyte growth, namely, transcripts for Notch3, for its ligand Jagged2, and for Deltex1, a mediator of a poorly characterized alternative pathway downstream of the Notch receptor.