65 resultados para LC-ESI-MS
Resumo:
In this work synthetic niobia was used to promote the oxidation of methylene blue dye in aqueous medium. The niobia was characterized by N2 adsorption/desorption, XRD and TG measurements. The presence of reactive species on the niobia surface strongly increased the oxidation rate of the methylene blue dye. The reaction mechanism was studied by ESI-MS suggesting that the oxidation of the organic dye involve oxidizing species generated mainly after previous treatment with H2O2. It can be observed that the catalyst is a good material in the activation of gas (atmospheric oxygen) or liquid (hydrogen peroxide) oxidant agent with a total discoloration of the dye solution after only 1 h of reaction.
Resumo:
In this work were prepared composites of iron oxide and carbonaceous materials in two different weight proportions (Carbon/Fe 1/1 and 1/2). The physico-chemical properties of the composites were determined by temperature programmed reduction (TPR), adsorption/dessorption of N2, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and pulse titration H2. The XRD and XPS analysis showed a cubic iron oxide phase, identified as maghemite, formed over the carbon surface. The particle size of maghemite showed to be within 10-30 nm. Carbon/Fe 1/2 was the most active in MB removal kinetics and ESI-MS studies showed that MB removal by both composites leads to oxidized intermediates.
Resumo:
In this work, the oxidation of methylene blue textile dye in the presence of hydrogen peroxide, using niobium oxide impregnated with different proportions of tin (1, 5 and 10% in mass) as catalyst was studied. The materials were characterized by TPR, XPS, XRD and FTIR. The oxidation tests monitored by ESI-MS showed that the composite containing the higher amount of tin was the most efficient in the removal of the dye. The XRD, XPS, and TPR data presented evidence of the formation of the tin-niobium oxide composite containing Sn0 and supported SnO2.
Resumo:
The chloroform partition of methanol extract of leaves of Caesalpinia pyramidalis was submitted to different chromatographic procedures which afforded besides agathisflavone and taxifolin, the minor biflavones loniflavone, amentoflavone, 5'- hydroxyamentoflavone and podocarpusflavone A. The structures of the compounds were established on the basis of NMR and MS data analysis. Besides, the content of biflavones of different specimens of C. pyramidalis, which are collected in different habitats of the Brazilian semi-arid region, was determinated by LC-APCI-MS analysis. These analysis demonstrated that only the specimens harvested in Bahia state showed collectively the presence of agathisflavone, amentoflavone, sequoiaflavone and podocarpusflavone A.
Resumo:
Preparative high-speed counter-current chromatography (HSCCC) was successfully applied for separation and purification of sesquiterpenoids from an extract of Tussilago farfara L. with a two-phase solvent system composed of n-hexane-ethyl acetate- methanol-water (1:0.5:1.1:0.3, v/v/v/v). The separation produced a total of 32 mg of tussilagone, 18 mg of 14-acetoxy-7β-(3'-ethyl cis-crotonoyloxy)-lα-(2'-methyl butyryloxy)-notonipetranone and 21 mg of 7β-(3'-ethyl cis-crotonoyloxy)-lα-(2'- methyl butyryloxy)-3,14-dehydro-Z-notonipetranone from 500 mg of the crude extract in one step separation with the purity of 99.5, 99.4 and 99.1%, respectively, as determined by HPLC. The structures of these compounds were identified by ESI-MS, ¹H-NMR and 13C-NMR.
Resumo:
A rapid analytical approach, suitable to characterize the compounds present in the aqueous and methanol extracts prepared from the aerial parts of Indigofera hirsute, was developed. The method based on high-performance liquid chromatography coupled to mass spectrometry, electrospray positive ionization and detection by time of flight (HPLC-ESI-MS-TOF) identified, tryptophan, uracil, rutin, kaempferol-3-O-β-D-glucopyranoside, gallic acid and methyl gallate. The antiradical activity of this extract was evaluated using DPPH assay, with gallic acid as antiradical pattern. The study revealed the antiradical activity of methyl galatte (EC50 = 5 ± 0.3 µg mL-1) galic acid (EC50 = 5 ± 0.2 µg mL-1) and rutin (EC50 = 21.6 ± 0.6 µg m L-1), isolated from methanol extract (EC50 = 67.7 ± 0.9 µg mL-1), which showed strong antiradical activity.
Resumo:
Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.
Resumo:
This work describes the phytochemical study of the methanol extract obtained from leaves of Guarea macrophylla, leading to the isolation and identification of three flavonoid glycosides (quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-b-D-galactopyranoside, kaempferol 7-O-β-D-glucopyranoside) and a neolignan glucoside, dehydrodiconiferyl alcohol-4-β-D-glucoside. All compounds were identified by a combination of spectroscopic methods (¹H, 1D, 2D NMR, 13C and UV), ESI-MS and comparison with the literature data. This is the first report of flavonoids in the genus Guarea and of a neolignan glucoside in the Meliaceae family.
Resumo:
The phytochemical investigation of L. macrophylla Benth led to the isolation of a new flavanol named licanol: (-)-4'-O-methyl-epigallocatechin-3'-O-α-L-rhamnoside, along with nine known compounds, identified as: (-)-4'-O-methyl-epigallocatechin, pheophytin A, 13²-hydroxy-(13²-S)-pheophytin A, pheophytin B, sitosterol, stigmasterol, sitosterol-β-O-glucoside, betulinic alcohol and oleanolic acid. The structures were established based on IR, HR-ESI-MS, and NMR spectrometric data analysis with the aid of 2D techniques. The methanolic extracts of leaves and stem bark as well as the compounds licanol, 13²-hidroxi-(13²-S)-feofitina A, and betulinic alcohol demonstrated antimicrobial activity against several bacterial strains.
Resumo:
Solutions of [hydroxy(tosyloxy)iodo]benzene (HTIB or Koser's reagent) in acetonitrile were analyzed using high resolution electrospray ionization mass spectrometry (ESI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) under different conditions. Several species were characterized in these analyses. Based on these data, mechanisms were proposed for the disproportionation of the iodine(III) compounds in iodine(V) and iodine(I) species.
Resumo:
The chemical investigation of the ethanolic extract from leaves of Croton pedicellatus yielded the bis-nor-sesquiterpenes blumenol A and blumenol A glucoside, along with the flavonoids: tiliroside, 6"-O-p-coumaroyl-β-galactopyranosyl- kaempferol, 6"-O-p-coumaroyl-β-glucopyranosyl-3"-methoxy- kaempferol, kaempferol, 3-glucopyranosyl-quercetin and alpinumisoflavone, as well as 4-hydroxy-3,5-dimethoxybenzoic acid. The identification of all isolated compounds was performed by spectrometric methods, including HR-ESI-MS, 1D and 2D NMR experiments, and by comparison with previously-described physical and spectral data.
Resumo:
The chemical investigation of hexane and ethanol extracts from the aerial parts of Vernonia scorpioides resulted in the isolation and characterization of a new polyacetylene lactone, rel-4-dihydro-4β-hydroxy-5a-octa-2,4,6-triynyl-furan-2-(5H)-one, along with the new ethyl 3,4-dihydroxy-6,8,10-triynyl-dodecanoate, and seven known compounds: taraxasteryl acetate, lupeyl acetate, lupeol, lupenone, β-sitosterol, stigmasterol and luteolin. The structure of all compounds was determined by spectrometric techniques (HR-ESI-MS, ¹H and 13C NMR and IV) and comparison with published spectral data.
Resumo:
Eight bufadienolides were successfully isolated and purified from ChanSu by high-speed counter-current chromatography (HSCCC) combined with preparative HPLC (prep-HPLC). First, a stepwise elution mode of HSCCC with the solvent system composed of petroleum ether - ethyl acetate - methanol - water (4:6:4:6, 4:6:5:5, v/v) was employed and four bufadienolides, two partially purified fractions were obtained from 200 mg of crude extract. The partially purified fractions III and VI were then further separated by prep-HPLC, respectively, and another four bufadienolides were recovered. Their structures were confirmed by ESI-MS and ¹H-NMR spectra.
Resumo:
An efficient method for the rapid separation and purification of polyphenols from artichoke by polyamide column chromatography in combination with high-speed counter-current chromatography (HSCCC) was successfully built. The crude ethanol extracts from dry artichoke were first pre-separated by polyamide column chromatography and divided in two parts as sample 1 and sample 2. Then, the samples were further separated by HSCCC and yielded 7.8 mg of chlorogenic acid (compound I), 24.5 mg of luteolin-7-O-β-D-rutinoside (compound II), 18.4 mg of luteolin-7-O-β-D-glucoside (compound III), and 33.4 mg of cynarin (compound IV) with purity levels of 92.0%, 98.2%, 98.5%, and 98.0%, respectively, as determined by high-performance liquid chromatography (HPLC) method. The chemical structures of these compounds were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR).
Resumo:
The technique of pH-zone-refining counter-current chromatography was successfully applied to preparatively separate three C19-diterpenoid alkaloids from the crude extracts of Aconitum carmichaelii for the first time using a two-phase solvent system of petroleum ether-ethyl acetate-methanol-water (5:5:1:9, v/v/v/v). Mesaconitine (I), hypaconitine (II), and deoxyaconitine (III) were obtained from 2.5 g of the crude alkaloids in a one-step separation; the yields were 4.16%, 16.96%, and 5.05%, respectively. The purities of compounds I, II, and III were 93.0%, 95%, and 96%, respectively, as determined by HPLC. The chemical structures of the three compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and NMR.