62 resultados para LARGE-ANIMAL MODEL
Resumo:
In order to develop a new experimental animal model of infection with Mycobacterium chelonae in keratomileusis, we conducted a double-blind prospective study on 24 adult male New Zealand rabbits. One eye of each rabbit was submitted to automatic lamellar keratotomy with the automatic corneal shaper under general anesthesia. Eyes were immunosuppressed by a single local injection of methyl prednisolone. Twelve animals were inoculated into the keratomileusis interface with 1 µl of 10(6) heat-inactivated bacteria (heat-inactivated inoculum controls) and 12 with 1 µl of 10(6) live bacteria. Trimethoprim drops (0.1%, w/v) were used as prophylaxis for the surgical procedure every 4 h (50 µl, qid). Animals were examined by 2 observers under a slit lamp on the 1st, 3rd, 5th, 7th, 11th, 16th, and 23rd postoperative days. Slit lamp photographs were taken to document clinical signs. Animals were sacrificed when corneal disease was detected and corneal samples were taken for microbiological analysis. Eleven of 12 experimental rabbits developed corneal disease, and M. chelonae could be isolated from nine rabbits. Eleven of the 12 controls receiving a heat-inactivated inoculum did not develop corneal disease. M. chelonae was not isolated from any of the control rabbits receiving a heat-inactivated inoculum, or from the healthy cornea of control rabbits. Corneal infection by M. chelonae was successfully induced in rabbits submitted to keratomileusis. To our knowledge, this is the first animal model of M. chelonae infection following corneal flaps for refractive surgery to be described in the literature and can be used for the analysis of therapeutic responses.
Resumo:
The generation of bradykinin (BK; Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) in blood and kallidin (Lys-BK) in tissues by the action of the kallikrein-kinin system has received little attention in non-mammalian vertebrates. In mammals, kallidin can be generated by the coronary endothelium and myocytes in response to ischemia, mediating cardioprotective events. The plasma of birds lacks two key components of the kallikrein-kinin system: the low molecular weight kininogen and a prekallikrein activator analogous to mammalian factor XII, but treatment with bovine plasma kallikrein generates ornitho-kinin [Thr6,Leu8]-BK. The possible cardioprotective effect of ornitho-kinin infusion was investigated in an anesthetized, open-chest chicken model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. The iv injection of a low dose of ornitho-kinin (4 µg/kg) reduced mean arterial pressure from 88 ± 12 to 42 ± 7 mmHg and increased heart rate from 335 ± 38 to 402 ± 45 bpm (N = 5). The size of the infarct was reduced by pretreatment with ornitho-kinin (500 µg/kg infused over a period of 5 min) from 35 ± 3 to 10 ± 2% of the area at risk. These results suggest that the physiological role of the kallikrein-kinin system is preserved in this animal model in spite of the absence of two key components, i.e., low molecular weight kininogen and factor XII.
Resumo:
Clinically relevant animal models capable of simulating traumatic hemorrhagic shock are needed. We developed a hemorrhagic shock model with male New Zealand rabbits (2200-2800 g, 60-70 days old) that simulates the pre-hospital and acute care of a penetrating trauma victim in an urban scenario using current resuscitation strategies. A laparotomy was performed to reproduce tissue trauma and an aortic injury was created using a standardized single puncture to the left side of the infrarenal aorta to induce hemorrhagic shock similar to a penetrating mechanism. A 15-min interval was used to simulate the arrival of pre-hospital care. Fluid resuscitation was then applied using two regimens: normotensive resuscitation to achieve baseline mean arterial blood pressure (MAP, 10 animals) and hypotensive resuscitation at 60% of baseline MAP (10 animals). Another 10 animals were sham operated. The total time of the experiment was 85 min, reproducing scene, transport and emergency room times. Intra-abdominal blood loss was significantly greater in animals that underwent normotensive resuscitation compared to hypotensive resuscitation (17.1 ± 2.0 vs 8.0 ± 1.5 mL/kg). Antithrombin levels decreased significantly in normotensive resuscitated animals compared to baseline (102 ± 2.0 vs 59 ± 4.1%), sham (95 ± 2.8 vs 59 ± 4.1%), and hypotensive resuscitated animals (98 ± 7.8 vs 59 ± 4.1%). Evidence of re-bleeding was also noted in the normotensive resuscitation group. A hypotensive resuscitation regimen resulted in decreased blood loss in a clinically relevant small animal model capable of reproducing hemorrhagic shock caused by a penetrating mechanism.
Resumo:
Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration.
Resumo:
The objective of the present study was to develop an efficient and reproducible protocol of immunization of guinea pigs with P. brasiliensis antigens as an animal model for future studies of protective immunity mechanisms. We tested three different antigens (particulate, soluble and combined) and six protocols in the presence and absence of Freund's complete adjuvant and with different numbers of immunizing doses and variable lenght of time between the last immunizing dose and challenge. The efficacy of the immunizing protocol was evaluated by measuring the humoral and cellular anti-P. brasiliensis immune response of the animals, using immuno-diffusion, skin test and macrophage migration inhibition test. It was observed that: 1. Three immunizing doses of the antigens induced a more marked response than two doses; 2. The highest immune response was obtained with the use of Freund's complete adjuvant; 3. Animals challenged a long time (week 6) after the last immunizing dose showed good anti-P. brasiliensis immune response; 4. The particulate antigen induced the lowest immune response. The soluble and the combined antigens were equally efficient in raising good humoral and cellular anti-P. brasiliensis immune response
Resumo:
Patients with paracoccidioidomycosis often present pulmonary fibrosis and exhibit important respiratory limitations. Based on an already established animal model, the contribution of viable and non-viable P. brasiliensis propagules to the development of fibrosis was investigated. BALB/c male mice, 4-6 weeks old were inoculated intranasally either with 4x10(6 )viable conidia (Group I), or 6.5x10(6) fragmented yeast cells (Group II). Control animals received PBS. Six mice per period were sacrificed at 24, 48, 72h (initial) and 1, 2, 4, 8, 12 and 16 weeks post-challenge (late). Paraffin embedded lungs were sectioned and stained with H&E, trichromic (Masson), reticulin and Grocott´s. During the initial period PMNs influx was important in both groups and acute inflammation involving 34% to 45% of the lungs was noticed. Later on, mononuclear cells predominated. In group I, the inflammation progressed and granulomas were formed and by the 12th week they fussed and became loose. Thick collagen I fibers were observed in 66.6% and 83.3% of the animals at 8 and 12 weeks, respectively. Collagen III, thick fibers became apparent in some animals at 4weeks and by 12 weeks, 83% of them exhibited alterations in the organization and thickness of these elements. In group II mice, this pattern was different with stepwise decrease in the number of inflammatory foci and lack of granulomas. Although initially most animals in this group had minor alterations in thin collagen I fibers, they disappeared by the 4th week. Results indicate that tissue response to fragmented yeast cells was transitory while viable conidia evoked a progressive inflammatory reaction leading to granuloma formation and to excess production and/or disarrangement of collagens I and III; the latter led to fibrosis.
Resumo:
In Amazonian Brazil, the Cebus apella monkey (Primates: Cebidae) has been associated with the enzootic cycle of Leishmania (V.) shawi, a dermotropic parasite causing American cutaneous leishmaniasis (ACL). It has also been successfully used as animal model for studying cutaneous leishmaniasis. In this work, there has been investigated its susceptibility to experimental Leishmania (L.) infantum chagasi-infection, the etiologic agent of American visceral leishmaniasis (AVL). There were used ten C. apella specimens, eight adult and two young, four males and six females, all born and raised in captivity. Two experimental infection protocols were performed: i) six monkeys were inoculated, intra-dermal via (ID), into the base of the tail with 2 x 10(6) promastigotes forms from the stationary phase culture medium; ii) other four monkeys were inoculated with 3 x 10(7) amastigotes forms from the visceral infection of infected hamsters by two different via: a) two by intravenous via (IV) and, b) other two by intra-peritoneal via (IP). The parameters of infection evaluation included: a) clinical: physical exam of abdomen, weigh and body temperature; b) parasitological: needle aspiration of the bone-marrow for searching of amastigotes (Giemsa-stained smears) and promastigotes forms (culture medium); c) immunological: Indirect fluorescence antibody test (IFAT) and, Delayed-type hypersensitivity (DTH). In the six monkeys ID inoculated (promastigotes forms) all parameters of infection evaluation were negative during the 12 months period of follow-up. Among the four monkeys inoculated with amastigotes forms, two IV inoculated showed the parasite in the bone-marrow from the first toward to the sixth month p.i. and following that they cleared the infection, whereas the other two IP inoculated were totally negative. These four monkeys showed specific IgG-antibody response since the third month p.i. (IP: 1/80 and IV: 1/320 IgG) toward to the 12th month (IP: 1/160 and IV: 1/5120). The DTH-conversion occurred in only one IV inoculated monkey with a strong (30 mm) skin reaction. Considering these results, we do not encourage the use of C. apella monkey as animal model for studying the AVL.
Resumo:
This study examined the susceptibility of peritoneal macrophage (PM) from the Neotropical primates: Callithrix jacchus, Callithrix penicillata, Saimiri sciureus, Aotus azarae infulatus and Callimico goeldii to ex vivo Leishmania (L.) infantum chagasi-infection, the etiological agent of American visceral leishmaniasis (AVL), as a screening assay for evaluating the potential of these non-human primates as experimental models for studying AVL. The PM-susceptibility to infection was accessed by the PM-infection index (PMI) at 24, 72 h and by the mean of these rates (FPMI), as well as by the TNF-α, IL-12 (Capture ELISA) and Nitric oxide (NO) responses (Griess method). At 24h, the PMI of A. azarae infulatus (128) was higher than those of C. penicillata (83), C. goeldii (78), S. sciureus (77) and C. jacchus (55). At 72h, there was a significant PMI decrease in four monkeys: A. azarae infulatus (128/37), C. penicillata (83/38), S. sciureus (77/38) and C. jacchus (55/12), with exception of C. goeldii (78/54). The FPMI of A. azarae infulatus (82.5) and C. goeldii (66) were higher than C. jacchus (33.5), but not higher than those of C. penicillata (60.5) and S. sciureus (57.5). The TNF-a response was more regular in those four primates which decreased their PMI at 24/72 h: C. jacchus (145/122 pg/mL), C. penicillata (154/130 pg/mL), S. sciureus (164/104 pg/mL) and A. azarae infulatus (154/104 pg/mL), with exception of C. goeldii (38/83 pg/mL). The IL-12 response was mainly prominent in A. infulatus and C. goeldii which presented the highest FPMI and, the NO response was higher in C. goeldii, mainly at 72 h. These findings strongly suggest that these New World primates have developed a resistant innate immune response mechanism capable of controlling the macrophage intracellular growth of L. (L.) i. chagasi-infection, which do not encourage their use as animal model for studying AVL.
Resumo:
In order to investigate the pathogenicity of the virus strain GOI 4191 that was isolated from a fatal adverse event after yellow fever virus (YFV) vaccination, an experimental assay using hamsters (Mesocricetus auratus) as animal model and YFV 17DD vaccine strain as virus reference was accomplished. The two virus strains were inoculated by intracerebral, intrahepatic and subcutaneous routes. The levels of viremia, antibody response, and aminotransferases were determined in sera; while virus, antigen and histopathological changes were determined in the viscera. No viremia was detected for either strain following infection; the immune response was demonstrated to be more effective to strain GOI 4191; and no significant aminotransferase levels alterations were detected. Strain GOI 4191 was recovered only from the brain of animals inoculated by the IC route. Viral antigens were detected in liver and brain by immunohistochemical assay. Histothological changes in the viscera were characterized by inflammatory infiltrate, hepatocellular necrosis, and viral encephalitis. Histological alterations and detection of viral antigen were observed in the liver of animals inoculated by the intrahepatic route. These findings were similar for both strains used in the experiment; however, significant differences were observed from those results previously reported for wild type YFV strains.
Resumo:
PURPOSE: To test an experimental model of chemical mammary carcinogenesis induction in rats. METHODS: Twenty young virgin Sprague-Dawley female rats, aged 47 days, received 20 mg of 7,12-dimethylbenz(a)anthracene (DMBA) intragastrically by gavage. Afterwards, at 8 and 13 weeks, their mammary glands were examined. At the end of the experiment, the animals were sacrificed, and the mammary tumors were measured and weighed. Tumor fragments were analyzed using light microscopy. RESULTS: Eight weeks after DMBA injection, 16 rats presented at least 1 breast tumor (80%). After 13 weeks, all of them (100%) developed breast carcinomas that were confirmed by histopathological analysis. CONCLUSION: This experimental animal model of chemical mammary induced carcinogenesis is feasible and can be used in further experiments on the role of tumorigenic biomodulator substances.
Resumo:
Abstract Background: Resistance training (RT) has been recommended as a non-pharmacological treatment for moderate hypertension. In spite of the important role of exercise intensity on training prescription, there is still no data regarding the effects of RT intensity on severe hypertension (SH). Objective: This study examined the effects of two RT protocols (vertical ladder climbing), performed at different overloads of maximal weight carried (MWC), on blood pressure (BP) and muscle strength of spontaneously hypertensive rats (SHR) with SH. Methods: Fifteen male SHR ENT#091;206 ± 10 mmHg of systolic BP (SBP)ENT#093; and five Wistar Kyoto rats (WKY; 119 ± 10 mmHg of SBP) were divided into 4 groups: sedentary (SED-WKY) and SHR (SED-SHR); RT1-SHR training relative to body weight (~40% of MWC); and RT2-SHR training relative to MWC test (~70% of MWC). Systolic BP and heart rate (HR) were measured weekly using the tail-cuff method. The progression of muscle strength was determined once every fifteen days. The RT consisted of 3 weekly sessions on non-consecutive days for 12-weeks. Results: Both RT protocols prevented the increase in SBP (delta - 5 and -7 mmHg, respectively; p > 0.05), whereas SBP of the SED-SHR group increased by 19 mmHg (p < 0.05). There was a decrease in HR only for the RT1 group (p < 0.05). There was a higher increase in strength in the RT2 (140%; p < 0.05) group as compared with RT1 (11%; p > 0.05). Conclusions: Our data indicated that both RT protocols were effective in preventing chronic elevation of SBP in SH. Additionally, a higher RT overload induced a greater increase in muscle strength.
Resumo:
Although several animal models for human cerebral malaria have been proposed in the past, name have shown pathological findings that are similar to those seen in humans. In order to develop an animal model for human cerebral malaria, we studied the pathology of brains of Plasmodium coatneyi (primate malaria parasite)-infected rhesus monkeys. Our study demonstrated parazitized erythrocyte (PRBC) sequestration and cytoadherence of knobs on PRBC to endothelial cells in cerebral microvessels of these monkeys. This similar to the findings een in human cerebral malaria. Crebral microvessels with sequestred PRBC were shown by immunohistochemistry to possess CD36, TSP and ICAM-1. These proteins were not evident in cerebral microvessels of uninfected control monkeys. Our study indicates, for the first time, that rhesus monkeys infected with P. coatneyi can be used as a primate model to study human cerebral malaria.
Resumo:
Blood eosinophilia and tissue infiltration by eosinophils are frequently observed in allergic inflammation and parasitic infections. This selective accumulation of eosinophils suggested the existence of endogenous eosinophil-selective chemoattractants. We have recently discovered a novel eosinophil-selective chemoattractant which we called eotaxin in an animal model of allergic airways disease. Eotaxin is generated in both allergic and non-allergic bronchopulmonary inflammation. The early increase in eotaxin paralled eosinophil infiltration in the lung tissue in both models. An antibody to IL-5 suppressed lung eosinophilia, correlating with an inhibition of eosinophil release from bone marrow, without affecting eotaxin generation. This suggests that endogenous IL-5 is important for eosinophil migration but does not appear to be a stimulus for eotaxin production. Constitutive levels of eotaxin observed in guinea-pig lung may be responsible for the basal lung eosinophilia observed in this species. Allergen-induced eotaxin was present mainly in the epithelium and alveolar macrophages, as detected by immunostaining. In contrast there was no upregulation of eotaxin by the epithelial cells following the injection of Sephadex beads and the alveolar macrophage and mononuclear cells surrounding the granuloma were the predominant positive staining cells. Eotaxin and related chemokines acting through the CCR3 receptor may play a major role in eosinophil recruitment in allergic inflammation and parasitic diseases and thus offer an attractive target for therapeutic intervention.
Resumo:
In the animal model of leishmaniasis caused by Leishmania (Leishmania) amazonensis there is a complex mechanism of the host-parasite interaction. The present study was performed to interfere with the inflammatory reaction to the parasites, through immune modulation. Female C5BL/6 isogenic mice were used, some of which were inoculated on the right ear and others on the right footpad with 3.10(6) stationary phase promastigotes of the MHOM/BR/PH8 strain of L. (L.) amazonensis, and were allocated in three groups: the first received pentoxifylline 8mg/kg every 12 h, since the first day; the second one received the same dose since the 40th day of infection and a control group that did not receive any treatment. All the ears excised were analyzed to determine the variation in weight between both ears and for histopathological analyses. A quantification of the parasites was done using the limiting dilution assay. A significant reduction of the number of parasites, was observed among the animals treated which had an accordingly significant reduction on the weight of the ears. Pentoxifylline reduced the macrophages propensity to vacuolation and induced a more effective destruction of the parasites by these cells. Moreover, the group that began the treatment later did not show the same effectiveness.
Resumo:
Fluorescent activated cell sorter (FACS) analysis is useful for the detection of cellular surface antigens and intracellular proteins. We used this methodology in order to detect and quantify dengue antigens in highly susceptible cells such as clone C6/36 (Aedes albopictus) and Vero cells (green monkey kidney). Additionally, we analyzed the infection in vitro of human peripheral blood mononuclear leukocytes (PBML). FACS analysis turned out to be a reliable technique to quantify virus growth in traditional cell cultures of C6/36 as well as Vero cells. High rates of infection were achieved with a good statistical correlation between the virus amount used in infection and the percentage of dengue antigen containing cells detected in infected cultures. We also showed that human monocytes (CD14+) are preferred target cells for in vitro dengue infection among PBML. Monocytes were much less susceptible to virus infection than cell lines but they displayed dengue antigens detected by FACS five days after infection. In contrast, lymphocytes showed no differences in their profile for dengue specific immunofluorescence. Without an animal model to reproduce dengue disease, alternative assays have been sought to correlate viral virulence with clinical manifestations and disease severity. Study of in vitro interaction of virus and host cells may highlight this relationship.