61 resultados para Ischemia and reperfusion, P2X2 receptor
Resumo:
A correlation between cancer and hypercoagulability has been described for more than a century. Patients with cancer are at increased risk for thrombotic complications and the clotting initiator protein, tissue factor (TF), is possibly involved in this process. Moreover, TF may promote angiogenesis and tumor growth. In addition to TF, thrombin seems to play a relevant role in tumor biology, mainly through activation of protease-activated receptor-1 (PAR-1). In the present study, we prospectively studied 39 lung adenocarcinoma patients in relation to the tumor expression levels of TF and PAR-1 and their correlation with thrombosis outcome and survival. Immunohistochemical analysis showed TF positivity in 22 patients (56%), most of them in advanced stages (III and IV). Expression of PAR-1 was found in 15 patients (39%), most of them also in advanced stages (III and IV). Remarkably, no correlation was observed between the expression of TF or PAR-1 and risk for thrombosis development. On the other hand, patients who were positive for TF or PAR-1 tended to have decreased long-term survival. We conclude that immunolocalization of either TF or PAR-1 in lung adenocarcinoma may predict a poor prognosis although lacking correlation with thrombosis outcome.
Resumo:
The mechanisms of statins relieving the no-reflow phenomenon and the effects of single-dose statins on it are not well known. This study sought to investigate the effects of inflammation on the no-reflow phenomenon in a rabbit model of acute myocardial infarction and reperfusion (AMI/R) and to evaluate the effects of single-dose atorvastatin on inflammation and myocardial no-reflow. Twenty-four New Zealand white male rabbits (5-6 months old) were randomized to three groups of eight: a sham-operated group, an AMI/R group, and an atorvastatin-treated group (10 mg/kg). Animals in the latter two groups were subjected to 4 h of coronary occlusion followed by 2 h of reperfusion. Serum levels of interleukin (IL)-6 were measured by enzyme-linked immunosorbent assay. The expression of interferon gamma (IFN-γ) in normal and infarcted (reflow and no-reflow) myocardial tissue was determined by immunohistochemical methods. The area of no-reflow and necrosis was evaluated pathologically. Levels of serum IL-6 were significantly lower in the atorvastatin group than in the AMI/R group (P<0.01). Expression of IFN-γ in infarcted reflow and no-reflow myocardial tissue was also significantly lower in the atorvastatin group than in the AMI/R group. The mean area of no-reflow [47.01% of ligation area (LA)] was significantly smaller in the atorvastatin group than in the AMI/R group (85.67% of LA; P<0.01). The necrosis area was also significantly smaller in the atorvastatin group (85.94% of LA) than in the AMI/R group (96.56% of LA; P<0.01). In a secondary analysis, rabbits in the atorvastatin and AMI/R groups were divided into two groups based on necrosis area (90% of LA): a small group (<90% of LA) and a large group (>90% of LA). There was no significant difference in the area of no-reflow between the small (61.40% of LA) and large groups (69.87% of LA; P>0.05). Single-dose atorvastatin protected against inflammation and myocardial no-reflow and reduced infarct size during AMI/R in rabbits. No-reflow was not dependent on the reduction of infarct size.
Resumo:
Background:Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate.Objective:To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury.Methods:A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies.Results:The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review.Conclusion:On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions.
Resumo:
Oxidative stress underlies many forms of vascular disease as well as tissue injury following ischemia and reperfusion. The major source of oxidative stress in the artery wall is an NADPH oxidase. This enzyme complex as expressed in vascular cells differs from that in phagocytic leucocytes both in biochemical structure and functions. The crucial flavin-containing catalytic subunits, Nox1 and Nox4, are not found in leucocytes, but are highly expressed in vascular cells and upregulated with vascular remodeling, such as that found in hypertension and atherosclerosis. The difference in catalytic subunits offers the opportunity to develop "vascular specific" NADPH oxidase inhibitors that do not compromise the essential physiological signaling and phagocytic functions carried out by reactive oxygen and nitrogen species. Nitric oxide and targeted inhibitors of NADPH oxidase that block the source of oxidative stress in the vasculature are more likely to prevent the deterioration of vascular function that leads to stroke and heart attack, than are conventional antioxidants. The roles of Nox isoforms in other inflammatory conditions are yet to be explored.
Resumo:
In the present study we standardized an experimental model of parabiotic circulation of isolated pig heart. The isolated heart was perfused with arterial blood from a second animal as support and submitted to regional ischemia for 30 min, followed by total ischemia for 90 min and reperfusion for 90 min. Parameters for measurement of ventricular performance using different indices measured directly or indirectly from intraventricular pressure were defined as: maximum peak pressure, final diastolic pressure, pressure developed, first derivative of maximum pressure (dP/dt max), first derivative of minimum pressure (dP/dt min), systolic stress of the left ventricle (sigmas), and maximum elastance of the left ventricle. Isolated hearts subjected to regional and global ischemia presented significant worsening of all measured parameters. Less discriminative parameters were dP/dt max and dP/dt min. Elastance was the most sensitive parameter during the reperfusion period, demonstrating an early loss of ventricular function during reperfusion. The model proved to be stable and reproducible and permitted the study of several variables in the isolated heart, such as ischemia and reperfusion phenomena, the effects of different drugs, surgical interventions, etc. The model introduces an advantage over the classical models which use crystalloid solutions as perfusate, because parabiotic circulation mimics heart surgery with extracorporeal circulation.
Resumo:
A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats.
Resumo:
Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB) has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R) injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM) blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv) protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt.
Resumo:
Abstract Background: Sleep deprivation (SD) is strongly associated with elevated risk for cardiovascular disease. Objective: To determine the effect of SD on basal hemodynamic functions and tolerance to myocardial ischemia-reperfusion (IR) injury in male rats. Method: SD was induced by using the flowerpot method for 4 days. Isolated hearts were perfused with Langendorff setup, and the following parameters were measured at baseline and after IR: left ventricular developed pressure (LVDP); heart rate (HR); and the maximum rate of increase and decrease of left ventricular pressure (±dp/dt). Heart NOx level, infarct size and coronary flow CK-MB and LDH were measured after IR. Systolic blood pressure (SBP) was measured at start and end of study. Results: In the SD group, the baseline levels of LVDP (19%), +dp/dt (18%), and -dp/dt (21%) were significantly (p < 0.05) lower, and HR (32%) was significantly higher compared to the controls. After ischemia, hearts from SD group displayed a significant increase in HR together with a low hemodynamic function recovery compared to the controls. In the SD group, NOx level in heart, coronary flow CK-MB and LDH and infarct size significantly increased after IR; also SD rats had higher SBP after 4 days. Conclusion: Hearts from SD rats had lower basal cardiac function and less tolerance to IR injury, which may be linked to an increase in NO production following IR.
Resumo:
The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation.
Resumo:
Background: Studies have demonstrated the diagnostic accuracy and prognostic value of physical stress echocardiography in coronary artery disease. However, the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia is limited. Objective: To evaluate the effectiveness of physical stress echocardiography in the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia. Methods: This is a retrospective cohort in which 866 consecutive patients with exercise test positive for myocardial ischemia, and who underwent physical stress echocardiography were studied. Patients were divided into two groups: with physical stress echocardiography negative (G1) or positive (G2) for myocardial ischemia. The endpoints analyzed were all-cause mortality and major cardiac events, defined as cardiac death and non-fatal acute myocardial infarction. Results: G2 comprised 205 patients (23.7%). During the mean 85.6 ± 15.0-month follow-up, there were 26 deaths, of which six were cardiac deaths, and 25 non-fatal myocardial infarction cases. The independent predictors of mortality were: age, diabetes mellitus, and positive physical stress echocardiography (hazard ratio: 2.69; 95% confidence interval: 1.20 - 6.01; p = 0.016). The independent predictors of major cardiac events were: age, previous coronary artery disease, positive physical stress echocardiography (hazard ratio: 2.75; 95% confidence interval: 1.15 - 6.53; p = 0.022) and absence of a 10% increase in ejection fraction. All-cause mortality and the incidence of major cardiac events were significantly higher in G2 (p < 0. 001 and p = 0.001, respectively). Conclusion: Physical stress echocardiography provides additional prognostic information in patients with exercise test positive for myocardial ischemia.
Resumo:
The systemic aspect of vascular damage induced by angiotensin II (ANG II) has been poorly explored in the literature. Considering the presence of ANG II and its specific receptor AT1, in several organs, all tissues might be potentially affected by its effects. The aims of this study were: To evaluate the early histological changes in the heart, liver and kidneys, produced by ANG II infusion, to evaluate the protective effect of losartan. Wistar rats were distributed into three groups: control (no treatment), treated with ANG II, and treated with ANG II + losartan. ANG II was continuously infused over 72 hours by subcutaneous osmotic pumps. Histological sections of the myocardium, kidneys and liver were stained and observed for the presence of necrosis. There were ANG II-induced perivascular inflammation and necrosis of the arteriolar wall in the myocardium, kidney, and liver by, which were partially prevented by losartan. There was no significant correlation between heart and kidney damage. Tissue lesion severity was lower than that of vascular lesions, without statistical difference between groups. ANG II causes vascular injury in the heart, kidneys and liver, indicating a systemic vasculotoxic effect; the mechanisms of damage/protection vary depending on the target organ; perivascular lesions may occur even when anti-hypertensive doses of losartan are used.
Resumo:
Brain ischemia followed by reperfusion causes neuronal death related to oxidative damage. Furthermore, it has been reported that subjects suffering from ischemic cerebrovascular disorders exhibit changes in circulating platelet aggregation, a characteristic that might be important for their clinical outcome. In the present investigation we studied tert-butyl hydroperoxide-initiated plasma chemiluminescence and thiol content as measures of peripheral oxidative damage in naive and preconditioned rats submitted to forebrain ischemia produced by the 4-vessel occlusion method. Rats were submitted to 2 or 10 min of global transient forebrain ischemia followed by 60 min or 1, 2, 5, 10 or 30 days of reperfusion. Preconditioned rats were submitted to a 10-min ischemic episode 1 day after a 2-min ischemic event (2 + 10 min), followed by 60 min or 1 or 2 days of reperfusion. It has been demonstrated that such preconditioning protects against neuronal death in rats and gerbils submitted to a lethal (10 min) ischemic episode. The results show that both 2 and 10 min of ischemia cause an increase of plasma chemiluminescence when compared to control and sham rats. In the 2-min ischemic group, the effect was not present after reperfusion. In the 10-min ischemic group, the increase was present up to 1 day after recirculation and values returned to control levels after 2 days. However, rats preconditioned to ischemia (2 + 10 min) and reperfusion showed no differences in plasma chemiluminescence when compared to controls. We also analyzed plasma thiol content since it has been described that sulfhydryl (SH) groups significantly contribute to the antioxidant capacity of plasma. There was a significant decrease of plasma thiol content after 2, 10 and 2 + 10 min of ischemia followed by reperfusion when compared to controls. We conclude that ischemia may cause, along with brain oxidative damage and cell death, a peripheral oxidative damage that is reduced by the preconditioning phenomenon.
Resumo:
Meningiomas are common, usually benign tumors, with a high postoperative recurrence rate. However, the genesis and development of these tumors remain controversial. We aimed to investigate the presence and implications of a mutated p53 protein and dopamine D2 receptor in a representative series of meningiomas and to correlate these findings with age, gender, tumor grade, and recurrence. Tumor tissue samples of 157 patients diagnosed with meningioma (37 males and 120 females, mean age 53.6±14.3 years) who underwent surgical resection between 2003 and 2012 at our institution were immunohistochemically evaluated for the presence of p53 protein and dopamine D2 receptor and were followed-up to analyze tumor recurrence or regrowth. Tumors were classified as grades I (n=141, 89.8%), II (n=13, 8.3%), or grade III (n=3, 1.9%). Dopamine D2 receptor and p53 protein expression were positive in 93.6% and 49.7% of the cases, respectively. Neither of the markers showed significant expression differences among different tumor grades or recurrence or regrowth statuses. Our findings highlight the potential role of p53 protein in meningioma development and/or progression. The high positivity of dopamine D2 receptor observed in this study warrants further investigation of the therapeutic potential of dopamine agonists in the evolution of meningiomas.
Resumo:
OBJECTIVES: The aim of this study was to describe the pattern of expression of Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) in skin biopsies of patients with American tegumentary leishmaniasis (ATL) caused by Leishmania braziliensis. METHODS: This prospective study evaluated 12 patients with ATL caused by Leishmania braziliensis confirmed by polymerase chain reaction. Immunohistochemistry was performed to determine the expression of TLR2 and TLR4. The number of NK cells, dendritic cells and macrophages in the tissue were calculated. The cytokine expression was determined using the anti-TNF-α, anti-IFN-Γ, anti-IL-1 and anti-IL-6. Double immunostaining reactions were used to determine the cell expressing TLR2 and TLR4. RESULTS: The numbers of cells expressing TLR2 and TLR4 were 145.48 ± 82.46 cell/mm² and 3.26 ± 4.11 cell/mm² respectively (p < 0.05). There was no correlation of TLR2 and TLR4 with the amount of cytokines and the number of NK cells, dendritic cells or macrophages. The double immunostaining revealed that TLR2 was expressed by macrophages. CONCLUSION: In human cutaneous leishmaniasis caused by Leishmania braziliensis, TLR2 is the most common TLR expressed during active disease, mainly by macrophages although without correlation with the amount of cytokines and number of cells.
Resumo:
OBJECTIVE: Studies have demonstrated that methylxanthines, such as caffeine, are A1 and A2 adenosine receptor antagonists found in the brain, heart, lungs, peripheral vessels, and platelets. Considering the high consumption of products with caffeine in their composition, in Brazil and throughout the rest of the world, the authors proposed to observe the effects of this substance on blood pressure and platelet aggregation. METHODS: Thirteen young adults, ranging from 21 to 27 years of age, participated in this study. Each individual took 750mg/day of caffeine (250mg tid), over a period of seven days. The effects on blood pressure were analyzed through the pressor test with handgrip, and platelet aggregation was analyzed using adenosine diphosphate, collagen, and adrenaline. RESULTS: Diastolic pressure showed a significant increase 24 hours after the first intake (p<0.05). This effect, however, disappeared in the subsequent days. The platelet aggregation tests did not reveal statistically significant alterations, at any time during the study. CONCLUSION: The data suggest that caffeine increases diastolic blood pressure at the beginning of caffeine intake. This hypertensive effect disappears with chronic use. The absence of alterations in platelet aggregation indicates the need for larger randomized studies.