25 resultados para Interoperability of Applications
Resumo:
The preparation and application of organic-inorganic hybrid materials are under fast development and constitute an interesting research topic on account of the versatility and wide range of applications offered by these materials. These properties can be achieved due to the mixture of the components at the molecular level. The present review covers the state of the art, the most useful preparation routes and the potential applications of these materials.
Resumo:
Lytic enzymes such as beta-1,3 glucanases, proteases and chitinases are able to hydrolyse, respectively, beta-1,3 glucans, mannoproteins and chitin, as well as the cell walls of many yeast species. Lytic enzymes are useful in a great variety of applications including the preparation of protoplasts; the extraction of proteins, enzymes, pigments and functional carbohydrates; pre-treatment for the mechanical rupture of cells; degradation of residual yeast cell mass for the preparation of animal feed; analysis of the yeast cell wall structure and composition; study of the yeast cell wall synthesis and the control of pathogenic fungi. This review presents the most important aspects with respect to lytic enzymes, especially their production, purification, cloning and application.
Resumo:
Catalysis by solid acids has received much attention due to its importance in petroleum refining and petrochemical processes. Relatively few studies have focused on catalysis by bases and even les on using basic molecular sieves. This paper deals with the potential application of micro and mesoporous molecular sieves in base catalysis reactions. The paper is divided in two parts, the first one dedicated to the design of the catalysts and the second to some relevant examples of catalytic reactions, which find a huge field of applications essentially in the synthesis of fine chemicals. Here, recent developments in catalysis by basic molecular sieves and the perspectives of applications in correlated catalytic processes are described.
Resumo:
The aromatic six-membered heterocycles having three nitrogen atoms are denominated triazines. Among these heterocycles, isocyanuric chloride and cyanuric chloride are inexpensive and readily available 1,3,5-triazine derivatives, which have been attracting significant attention of organic chemists due to their different kinds of applications, which vary from pharmaceuticals to explosives. This short overview explores their uses in synthetic methods, as chlorinating and oxidating agents and some procedures for their preparation.
Resumo:
Continuum solvation models are nowadays widely used in the modeling of solvent effects and the range of applications goes from the calculation of partition coefficients to chemical reactions in solution. The present work presents a detailed explanation of the physical foundations of continuum models. We discuss the polarization of a dielectric and its representation through the volume and surface polarization charges. The Poisson equation for a dielectric was obtained and we have also derived and discuss the apparent surface charge method and its application for free energy of solvation calculations.
Resumo:
The Prins cyclization reaction has significantly advanced in the last years as demonstrated by a number of applications described in the literature. The objective of this report is to introduce this powerful synthetic methodology to the undergraduate and graduated student, since it is rarely presented in an organic synthesis formal course. This reaction is, in some cases, the methodology of choice for the preparation of natural products or drugs that present the tetrahydropyrane moiety in their structures. In this report we show some aspects of this reaction, including mechanism, scope and limitations.
Resumo:
Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.
Resumo:
Nanotechnology developments continue to be produced at exponential rates for a wide and diverse range of applications. In this paper was done a study of technological forecasting in nanotechnology applied to health, based on information drawn in Brazil from 1991 to 2010. The longitudinal evolutions of the number of patent applications, their topics, and their respective patent families have been evaluated for the total global activity. There were obtained 1352 patent applications in this period. It were analyzed the legal nature of the depositors, the year of deposit, depositors' home countries and processes. It has been a goal subsidizes the policy-makers to adapt and modernize the regulatory framework on nanotechnology and risks involving health as a strategic area in the politics of Science.
Resumo:
AbstractMany well-established methods for determining the antioxidant capacities in several samples have been described in literature. However, DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) are the main two methods that utilize radicals as spectrophotometric probes for analysis. Nevertheless, these methods have certain limitations because of their slower kinetics, solvent polarity effects, the hydrophilicity and lipophilicity of the compounds, chemical costs, etc. In this study, a spectrophotometric method for determining the antioxidant capacity in beverages was developed based on an exploration of the cation radical derived from DEPD. This method was based on the oxidation of aromatic amines with Fe(III) ions at pH 4.0, which leads to their corresponding purple cation radicals (DEPD•+) with λmax values at 500 and 540 nm. The addition of an antioxidant after the formation of the radical leads to a reduction in color intensity that is proportional to the antioxidant concentration in the medium. Results obtained using this method were compared with the Folin-Ciocalteau, ABTS and DPPH methods in terms of applications in wines, teas, and infusions samples. Linear correlation analysis at a 95% confidence level was employed to compare the results, which were in good agreement with a correlation coefficient of r > 0.9000. Thus, the developed method was simple, accurate, and consistent with other assays for the determination of the total amount of phenolic compounds and antioxidant capacity.
Resumo:
2015 is the Year of Light, according to UNESCO. Chemistry has a close relationship with light and one of the materials that allows such synergy is glass. Depending on the chemical composition of the glass, it is possible to achieve technological applications for the whole range of wavelengths extending from the region of the microwave to gamma rays. This diversity of applications opens a large range of research where chemistry, as a central science, overlaps the fields of physics, engineering, medicine, etc., generating a huge amount of knowledge and technological products used for humanity. This review article aimed at discussing some families of glasses, illustrating some applications. Due to the extension of the theme, and all points raised, we thought it would be good to divide the article into two parts. In the first part we focus on the properties of heavy metal oxide glasses, fluoride glasses and chalcogenide glasses. In the second part we emphasize the properties of glassy thin films prepared by sol-gel methodology and some applications, of both glasses as the films in photonics, and more attention was given to the nonlinear properties and uses of photonic fibers.