91 resultados para Insect-Plant Interaction
Resumo:
The reaction of nine vector species of Chagas' disease to infection by seven different Trypanosoma cruzi strains; Berenice, Y, FL, CL, S. Felipe, Colombiana and Gávea, are examined and compared. On the basis of the insects' ability to establish and maintain the infection, vector species could be divided into two distinct groups which differ in their reaction to an acute infection by T. cruzi. While the proportion of positive bugs was found to be low in Triatoma infestans and Triatoma dimidiata it was high, ranging from 96.9% to 100% in the group of wild (Rhodnius neglectus, Triatoma rubrovaria)and essentially sylvatic vectors in process of adaptation to human dwellings, maintained under control following successful insecticidal elimination of Triatoma infestans (Panstrongylus megistus, Triatoma sordida and Triatoma pseudomaculata). An intermediate position is held by Triatoma brasiliensis and Rhodnius prolixus. This latter has been found to interchange between domestic and sylvatic environments. The most important finding is the strikingly good reaction between each species of the sylvatic bugs and practically all T. cruzi strains herein studied, thus indicating that the factors responsible for the excellent reaction of P.megistus to infection by Y strain, as previously reported also come into operation in the reaction of the same vector species to acute infections by five of the remaining T.cruzi strains. Comparison or data reported by other investigators with those herein described form the basis of the discussion of Dipetalogaster maximus as regards its superiority as a xenodiagnostic agent.
Resumo:
The objective of this study was to assess genotype by environment interaction for seed yield per plant in rapeseed cultivars grown in Northern Serbia by the AMMI (additive main effects and multiplicative interaction) model. The study comprised 19 rapeseed genotypes, analyzed in seven years through field trials arranged in a randomized complete block design, with three replicates. Seed yield per plant of the tested cultivars varied from 1.82 to 19.47 g throughout the seven seasons, with an average of 7.41 g. In the variance analysis, 72.49% of the total yield variation was explained by environment, 7.71% by differences between genotypes, and 19.09% by genotype by environment interaction. On the biplot, cultivars with high yield genetic potential had positive correlation with the seasons with optimal growing conditions, while the cultivars with lower yield potential were correlated to the years with unfavorable conditions. Seed yield per plant is highly influenced by environmental factors, which indicates the adaptability of specific genotypes to specific seasons.
Resumo:
Previous studies (1982,1987) have emphasized the superiority of sylvatic vector species over domestic species as xenodiagnostic agents in testing hosts with acute or chronic infections by T. cruzi "Y" stock. The present study, which is unique in that it contains data on both infectivity rates produced by the same stock in 11 different vector species and also the reaction of the same vector species to seven different parasite stocks, establishes the general validity of linking efficiency of xenodiagnosis to the biotope of its agent. For example, infectivity rates produced by "São Felipe" stock varied from 82.5% to 98.3% in sylvatic vectors but decreased to 42.5% to 71.3% in domestic species. "Colombiana" stock produced in the same sylvatic vectors infectivity rates ranging from 12.5% to 45%. These shrank to 5%-22.5% in domestic bugs. The functional role of the biotope in the vector-parasite interaction has not been eluddated. But since this phenomenon has been observed to be stable and easy to reproduce, it leads us to believe that the results obtained are valid. Data presented also provide increasing evidence that the infectivity rates exhibited by bugs from xenodiagnosis in chronic hosts, are parasite stock specific. For example, infectivity rates produced by "Berenice", "Y", "FL" and "CL" varied in R. neglectus from 26.3% to 75%; in P. megistus from 56.3% to 83.8%; in T. sordida from 28.8% to 58.8% in T. pseudomaculata from 41.3% to 66.3% and in T. rubrovaria from 48.8% to 85%. Data from xenodiagnosis in the same hosts, carrying acute infections by the same parasite stocks, gave the five sylvatic vectors a positive rating of approximately 100%, thus suggesting that the heavy loads of parasites circulating in the acute hosts obscured the characteristic interspecific differences for the parasite stock. Nonetheless these latter were revealed in the same hosts with chronic infections stimulated by very low numbers of the same parasite stocks. Certain observations here described lead us to speculate as to the possibility of further results from other parasite stocks, allowing the association of the infectivity rates produced in bugs by different parasite stocks with the isoenzymic patterns revealed by these stocks.
Resumo:
Introduction Aedes aegypti is responsible for the transmission of the dengue and yellow fever viruses. This study evaluated the effects of extracts from Cnidosculos phyllacanthus, Ricinus communis, and Coutarea hexandra on the developmental periods of A.aegypti larvae and pupae. Crude extracts of C. phyllacanthus and C. hexandra and oil from R. communis and C. phyllacanthus were used. Methods Bioassays of the larvicidal and pupicidal effects of these products at different concentrations and times of exposure were evaluated. The lethal and sublethal effects were determined using different concentrations in larvicidal tests. Mortality data were evaluated by Probit analysis to determine the LC50 and LC90 values. Results The vegetable oils from C. phyllacanthus and R. communis demonstrated greater efficiency for larval control with an LC50=0.28µl/mL and an LC90=1.48µl/mL and LC50=0.029µl/mL and a LC90=0.26µl/mL, respectively. In pupal tests toxic effects for all insects were verified after exposure to the products at significant LC50 and LC90 values for 24 and 48h. The effects of sublethal concentrations of C. phyllacanthus (oil) were more effective on the insects. Conclusions The vegetables oils from C. phyllacanthus and R. communis demonstrated greater potential from the control of different developmental periods in the life cycle of this insect.
Resumo:
In this study we present a new record of a plant-animal interaction: the mutualistic relationship between the specialist plant-ant Myrcidris epicharis Ward, 1990 (Pseudomyrmecinae) and its myrmecophyte host Myrcia madida McVaugh (Myrtaceae). We observed more than 50 individuals of M. madida occupied by M. epicharis in islands and margins of the Juruena River, in Cotriguaçu, Mato Grosso, Brazil (Meridional Amazon). We discuss a possible distribution of this symbiotic interaction throughout all the riparian forest of the Amazon River basin and its consequence to coevolution of the system.
Resumo:
Columnar cell apical membranes (CCAM) in series with goblet cell apical membranes (GCAM) form an electroosmotic barrier separating the midgut lumen from epithelial cell cytoplasm. A unique K+ ATPase in GCAM generates three gradients across this barrier. A greater than 180 mV electrical gradient (lumen positive) drives amino acid uptake through voltage-dependent K+ symports. A greater than 1000-fold [H+] gradient (lumen alkaline) and a greater than 10-fold [K+] gradient (lumen concentrated) are adaptations to the high tannin and high K+ content, respectively, in dietary plant material. Agents which act on the apical membrane and disrupt the PD, H+, or K+ gradients are potential insecticides. Insect sensory epithelia and mammalian stria vascularis maintain similar PD and K+ gradients but would not be exposed to ingested anti-apical membrane insecticides. Following the demonstration by Sacchi et al. that Bacillus thuringiensis delta-endotoxin (Bt) induces specifically a K+ conductance increase in CCAM vesicles, we find that the K+ channel blocking agent, Ba2+, completely reverses Bt inhibition of the K+-carried short circuit current in the isolated midgut of Manduca sexta. Progress in characterizing the apical membrane includes finding that fluorosulfonylbenzoyladenosine binds specifically to certain GCAM polypeptides and that CCAM vesicles can be mass produced by Ca2+ or Mg2+ precipitation from Manduca sexta midgut.
Resumo:
Of ten recognized trypanosomatid genera, only two -- pathogenic Trypanosoma and Leishmania -- have been actively investigated for any length of time while the plant flagellates -- Phytomonas -- have recently begun to attract attention due to their role as agricultural parasites. The remaining genera that comprise parasites associated with insects have been largely neglected except for two or three containing popular isolates. This publication reviews current knowledge of trypanosomatids from insects.
Resumo:
We investigated the efficacy and the residual effect of fipronil® against two species of triatomine bugs, Triatoma infestans and Rhodnius neglectus, in laboratory conditions measuring concentration-response and residual activity on different surfaces (dried mud and lime coated mud). Lethal concentrations (LC50,90) were determined on filter paper. The higher insecticide efficacy against R. neglectus when compared to T. infestans may be partially attributed to the differences in their biological cycles and genetic structures. Comparison with lambdacyhalothrin wettable powder showed that fipronil mortality rates (above 50%) were observed on mud blocks and lime-coated mud blocks up to 3 months when fipronil was sprayed at 100 and 200 mg a.i./m². Residual effect deeply decayed after 3 months; and at 6 months post treatment mortality was not observed. In contrast, lambdacyhalothrin showed a long lasting residual effect on both surfaces up to 6 months. Also, it should be mentioned that fipronil had a slow, but lethal activity on the triatomine bugs when wettable formulations were used on porous surfaces.
Resumo:
Lipophorin (Lp) is the main haemolymphatic lipoprotein in insects and transports lipids between different organs. In adult females, lipophorin delivers lipids to growing oocytes. In this study, the interaction of this lipoprotein with the ovaries of Rhodnius prolixus was characterised using an oocyte membrane preparation and purified radiolabelled Lp (125I-Lp). Lp-specific binding to the oocyte membrane reached equilibrium after 40-60 min and when 125I-Lp was incubated with increasing amounts of membrane protein, corresponding increases in Lp binding were observed. The specific binding of Lp to the membrane preparation was a saturable process, with a Kdof 7.1 ± 0.9 x 10-8M and a maximal binding capacity of 430 ± 40 ng 125I-Lp/µg of membrane protein. The binding was calcium independent and pH sensitive, reaching its maximum at pH 5.2-5.7. Suramin inhibited the binding interaction between Lp and the oocyte membranes, which was completely abolished at 0.5 mM suramin. The oocyte membrane preparation from R. prolixus also showed binding to Lp from Manduca sexta. When Lp was fluorescently labelled and injected into vitellogenic females, the level of Lp-oocyte binding was much higher in females that were fed whole blood than in those fed blood plasma.
Resumo:
The interaction patterns between the dioecious shrub Baccharis concinna Barroso (Asteraceae) and its speciose galling insect community were studied in southeastern Brazil. Two hypotheses were tested in this study: "the differential reproduction and growth hypothesis" that predicts that male plants present fewer reproductive structures and are larger than female plants; and the 'sex-biased herbivory hypothesis' that predicts that male plants support a larger abundance of insect galls than female plants. Plants did not show sexual dimorphism in growth (= mean leaf number). However, male plants had longer shoots and a lower average number of inflorescences than female plants. These results corroborate the hypothesis that male plants grow more and reproduce less than female plants. No statistically significant difference was found in the number of galls between male and female plants, but a sex by environmental effect on gall number was detected. When each species of galling insect was individually analyzed per population of the host plant, the rates of attack varied between sex and population of the host plant, and they were highly variable among the species of galling insects. These results highlight the importance of the interaction between sex and environment in the community structure of galling insects and indicate that other variables besides host sex may influence the patterns of attack by galling herbivores.
Resumo:
We observed the occurrence of large numbers of galls induced by Parkiamyia paraensis (Diptera, Cecidomyiidae) on the leaflets of Parkia pendula (Fabaceae) in northern Para, Brazil. We addressed two questions in this study: i) what is the proportion of attacked plants in the field, and nursery conditions?; and ii) what is the impact of galls on the host plant? An average of 86% of the plants were galled in the field. Galled P. pendula were distinct from healthy individuals due to their prostrated architecture and death of terminal shoots. Approximately 50% of the total available leaves and 35% leaflets were attacked by P. paraensis on saplings under nursery conditions. Each one-year old plant supported an average of 1,300 galls, and an average of 60g allocated to galled tissue. Otherwise, attacked individuals were taller and heavier than healthy plants. Attacked plants weighed five times more than healthy plants. When the weight of the galls was removed, the total weight (aerial part without galls) of attacked plants was drastically reduced, indicating that most of the biomass of attacked plants was due to the attack by P. paraensis galls. Although the data indicate a paradox, as young plants attacked by the galling herbivore appear to develop more vigorously than unattacked plants, we suggest that P. paraensis negatively affect P. pendula development.
Resumo:
The plant architecture hypothesis predicts that variation in host plant architecture influences insect herbivore community structure, dynamics and performance. In this study we evaluated the effects of Macairea radula (Melastomataceae) architecture on the abundance of galls induced by a moth (Lepidoptera: Gelechiidae). Plant architecture and gall abundance were directly recorded on 58 arbitrarily chosen M. radula host plants in the rainy season of 2006 in an area of Cerrado vegetation, southeastern Brazil. Plant height, dry biomass, number of branches, number of shoots and leaf abundance were used as predicting variables of gall abundance and larval survival. Gall abundance correlated positively with host plant biomass and branch number. Otherwise, no correlation (p > 0.05) was found between gall abundance with shoot number or with the number of leaves/plant. From a total of 124 galls analyzed, 67.7% survived, 14.5% were attacked by parasitoids, while 17.7% died due to unknown causes. Larvae that survived or were parasitized were not influenced by architectural complexity of the host plant. Our results partially corroborate the plant architecture hypothesis, but since parasitism was not related to plant architecture it is argued that bottom-up effects may be more important than top-down effects in controlling the population dynamics of the galling lepidopteran. Because galling insects often decrease plant fitness, the potential of galling insects in selecting for less architectural complex plants is discussed.
Resumo:
Despite the speciose fauna of gall-inducing insects in the Neotropical region, little is known about their taxonomy. On the other hand, gall morphotypes associated with host species have been extensively used as a surrogate of the inducer species worldwide. This study reviewed the described gall midges and their galls to test the generalization on the use of gall morphotypes as surrogates of gall midge species in the Brazilian fauna. We compiled taxonomic and biological data for 196 gall midge species recorded on 128 host plant species. Ninety two percent of those species were monophagous, inducing galls on a single host plant species, whereas only 5.6% species were oligophagous, inducing galls on more than one congeneric host plant species. Only four species induced galls on more than one host plant genus. We conclude that gall morphotypes associated with information on the host plant species and attacked organs are reliable surrogates of the gall-inducing species.
Resumo:
Pattern of attack of a galling insect reveals an unexpected preference-performance linkage on medium-sized resources. The Plant Vigor Hypothesis (PVH) predicts oviposition preference and higher offspring performance on longer and fast-growing shoots, and although several studies have tested its predictions, long-term studies concerning the patterns of host selection by galling species are still lacking. The PVH was tested in this study using Bauhinia brevipes (Fabaceae) as the host of a leaf gall midge, Asphondylia microcapillata (Diptera, Cecidomyiidae) during three consecutive years. Shoots were collected from the same 80 plants between 2001 and 2003 and shoot length, number of healthy and galled leaves, gall number, and mortality factors were recorded. Nearly 600 galls were found on the 5,800 shoots collected. Medium-sized shoots supported from 46 to 70% of all galls, with greater gall survival rate in 2002 and 2003. A decrease in parasitism rate coupled with an increase in gall predation lead to a constant similar gall survivorship rate in all years (x = 22.7%). Although gall abundance varied among years (122 in 2001, 114 in 2002 and 359 in 2003) preference for longer shoots was not observed because the percentage of galled shoots and galled leaves were higher on medium shoot length classes in all years. The observed distribution of gall abundance and galled shoots were always greater than the expected distribution on medium shoot length classes. These findings do not support the PVH, and show that A. microcapillata can maximize the female preference and larval performance on medium-sized shoots of B. brevipes.
Resumo:
Insects associated with syconia of Ficus citrifolia in central Brazil. Fig trees present a diverse interaction with different groups of organisms. The inflorescence, or syconium, has characteristics that form a microenvironment in which interactions occur between fig trees and invertebrates. This study aimed to identify the insect fauna associated with the figs of Ficus citrifolia and to quantitatively describe the distribution pattern of the insects in the syconium, in an urban area in central Brazil. The syconia were used by 12 species of insects. Our results showed that the insects found on Ficus citrifolia presented a pattern of occurrence that depends on the composition of species found within each syconium.