120 resultados para Imagens Landsat TM-5
Resumo:
O objetivo deste trabalho foi estimar a área plantada com soja por meio da normalização da matriz de erros gerada a partir da classificação supervisionada de imagens TM/Landsat‑5. Foram avaliados oito municípios no Estado do Paraná, com dados referentes à safra de 2003/2004. As classificações foram realizadas por meio dos métodos paralelepípedo e máxima verossimilhança, dando origem à "máscara de soja". Os valores do índice Kappa dos oito municípios ficaram acima de 0,6. As estimativas de área de soja, corrigidas por matriz de erros, apresentaram alta correlação com as estimativas oficiais do estado e com as estimativas geradas a partir de um método alternativo denominado "expansão direta". A estimativa de área de soja por meio da normalização da matriz de erros apresenta menor custo e pode subsidiar métodos convencionais na estimativa menos subjetiva de safras.
Resumo:
Este estudo apresenta um mapa da cobertura vegetal da planície de inundação do Rio Amazonas entre as cidades de Parintins (AM) e Almeirim (PA), com base em imagens Landsat-MSS adquiridas entre 1975 e 1981. O processamento digital dessas imagens envolveu a transformação para imagens-fração de vegetação, solo e água escura (sombra), seguido da aplicação de técnicas de segmentação e classificação por região. O mapa resultante da classificação foi organizado em quatro classes de cobertura do solo: floresta de várzea, vegetação não-florestal de várzea, solo exposto e água aberta. A precisão do mapa foi estimada a partir de dois tipos de informações coletadas em campo: 1) pontos de descrição: para validação das classes de cobertura não sujeitas a grandes alterações, como é o caso dos corpos d'água permanentes, e identificação de indicadores dos tipos de cobertura original presentes na paisagem na ocasião da obtenção das imagens (72 pontos); 2) entrevistas com moradores antigos para a recuperação da memória sobre a cobertura vegetal existente há 30 anos (44 questionários). Ao todo foram coletadas informações em 116 pontos distribuídos ao longo da área de estudo. Esses pontos foram utilizados para calcular o Índice Kappa de concordância entre os dados de campo e o mapa resultante da classificação automática, cujo valor (0,78) indica a boa qualidade do mapa de cobertura vegetal da várzea. Os resultados mostram que a região possuía uma cobertura florestal de várzea de aproximadamente 8.650 km2 no período de aquisição das imagens.
Análise quantitativa de parâmetros biofísicos de bacia hidrográfica obtidos por sensoriamento remoto
Resumo:
O objetivo deste trabalho foi avaliar quantitativamente os parâmetros biofísicos obtidos por sensoriamento remoto, para a área de abrangência da Bacia Hidrográfica do Rio Tapacurá, em Pernambuco. Utilizaram-se imagens do TM‑Landsat 5 de 10/7/1989, 6/7/2005 e 29/8/2007. As imagens foram registradas pela correção geométrica polinomial de primeira ordem. Foram realizadas as etapas de calibração radiométrica, reflectância, albedo planetário e transmissividade e, subsequentemente, geraram-se cartas temáticas de albedo e de temperatura da superfície, e do índice de vegetação melhorado ("enhanced vegetation index", EVI). O albedo da superfície apresentou valores médios crescentes entre as imagens obtidas em 1989 e 2005, o que indica expansão territorial urbana. A imagem de 29/8/2007 mostrou maior temperatura da superfície, seguida das temperaturas mostradas nas imagens de 10/7/1989 e 6/7/2005, e os maiores valores foram os das malhas urbanas. A imagem de 1989 mostrou o maior valor médio de EVI, o que indica ter havido, naquela data, maior presença de vegetação.
Resumo:
O objetivo deste trabalho foi utilizar a classificação orientada a objetos em imagens TM/ Landsat‑5, para caracterizar classes de uso e cobertura da terra, na região do Médio Araguaia. A cena 223/068, adquirida em 5/9/2010, foi submetida a correção radiométrica, atmosférica e geométrica, como etapas de pré‑processamento. Em seguida, foram geradas duas imagens por meio das matemáticas de bandas espectrais do índice de vegetação por diferença normalizada (NDVI) e do índice de água por diferença normalizada modificado (MNDWI), utilizados na classificação de imagens. Para a segmentação destas, utilizaram-se os parâmetros de escala 250, 200, 150, 100, 50, os algoritmos "assign class" e "nearest neighbor", e os descritores de média, área e relação de borda. Foi empregada matriz de confusão, para avaliar a acurácia da classificação, por meio do coeficiente de exatidão global e do índice de concordância Kappa. A exatidão global para o mapeamento foi de 83,3%, com coeficiente Kappa de 0,72. A classificação foi feita quanto às fitofisionomias do Cerrado, ao uso antrópico e urbano da terra, a corpos d'água e a bancos de areia. As matemáticas de bandas espectrais utilizadas apresentam resultados promissores no delineamento das classes de cobertura da terra no Araguaia.
Correlação de variáveis espectrais e estoque de carbono da biomassa aérea de sistemas agroflorestais
Resumo:
O objetivo deste trabalho foi avaliar a correlação entre variáveis espectrais e o estoque de carbono da biomassa aérea de sistemas agroflorestais da região de Tomé‑Açu, PA. Foram testados 24 índices de vegetação de três grupos (razão simples, diferença normalizada e complexos), gerados a partir de imagens do sensor TM/Landsat‑5, adquiridas em 2008. As variáveis obtidas foram correlacionadas, por meio de regressão linear simples, ao estoque de carbono de quatro classes de sistemas agroflorestais, de diferentes idades e composições florísticas. As correlações obtidas entre as variáveis espectrais e o estoque de carbono foram significativas em 47% dos índices testados e variaram de acordo com as diferenças de biomassa nos sistemas analisados. As melhores correlações foram obtidas pelos índices de vegetação de razão simples e de diferença normalizada, em sistemas agroflorestais jovens, e pelos índices de vegetação complexos, em sistemas agroflorestais mais antigos.
Resumo:
Resumo: O objetivo deste trabalho foi avaliar o desempenho dos classificadores digitais SVM e K-NN para a classificação orientada a objeto em imagens Landsat-8, aplicados ao mapeamento de uso e cobertura do solo da Alta Bacia do Rio Piracicaba-Jaguari, MG. A etapa de pré-processamento contou com a conversão radiométrica e a minimização dos efeitos atmosféricos. Em seguida, foi feita a fusão das bandas multiespectrais (30 m) com a banda pancromática (15 m). Com base em composições RGB e inspeções de campo, definiram-se 15 classes de uso e cobertura do solo. Para a segmentação de bordas, aplicaram-se os limiares 10 e 60 para as configurações de segmentação e união no aplicativo ENVI. A classificação foi feita usando SVM e K-NN. Ambos os classificadores apresentaram elevados valores de índice Kappa (k): 0,92 para SVM e 0,86 para K-NN, significativamente diferentes entre si a 95% de probabilidade. Uma significativa melhoria foi observada para SVM, na classificação correta de diferentes tipologias florestais. A classificação orientada a objetos é amplamente aplicada em imagens de alta resolução espacial; no entanto, os resultados obtidos no presente trabalho mostram a robustez do método também para imagens de média resolução espacial.
Resumo:
A vegetação secundária tem funções relevantes para os ecossistemas, tais como a fixação de carbono atmosférico, a manutenção da biodiversidade, o estabelecimento da conectividade entre remanescentes florestais, manutenção dos regime hidrológico e a recuperação da fertilidade do solo. O objetivo deste trabalho é, através de uma abordagem amostral, estimar a área ocupada por vegetação secundária na Amazônia Legal Brasileira (AML) em 2006. A amostragem se baseia em uma abordagem estratificada pelo grau de desflorestamento das cenas LANDSAT-TM que recobrem a AML. Foram selecionadas 26 cenas para o ano de 2006, distribuídas em sete estratos conforme o percentual de desflorestamento, nas quais foram mapeadas as áreas de vegetação secundária a partir de técnicas de classificação de imagens. Foi desenvolvido um modelo multivariado de regressão para estimar a área de vegetação secundária utilizando como variáveis independentes a área de desflorestamento, a área de hidrografia, a estrutura agrária, e área das unidades de conservação. A análise de regressão encontrou um R2 ajustado de 0,84 , e coeficientes positivos para a proporção de hidrografia na imagem (2,055) e para a estrutura agrária (0,197), e coeficientes negativos para o grau de desflorestamento na imagem (-0,232) e para a proporção de Unidades de Conservação na imagem (-0,262). O modelo de regressão estimou uma área de 131.873 km² de vegetação secundária para o ano de 2006. Aplicando uma simulação Monte Carlo foi estimada uma incerteza de aproximadamente 12.445 km² para a área.
Resumo:
A utilização de imagens de radar é fonte alternativa de informações para subsidiar o monitoramento da região amazônica, visto que as imagens ópticas têm limitações de imageamento em zonas tropicais face a ocorrência de nuvens. Por conseguinte este trabalho teve como objetivo analisar a capacidade das imagens-radar de banda X multitemporais e polarizadas obtidas pelo satélite COSMO-SkyMed (COnstellation of small Satellites for Mediterranean basin Observation), no modo intensidade, isoladamente e agregados às informações texturais, na caracterização temática de uso e cobertura da terra no município de Humaitá/AM. A metodologia empregada consistiu da: análise das imagens duais obtidas em duas aquisições subsequentes, de forma a explorar a potencialidade do conjunto de dados na forma quad-pol intensidade; extração dos atributos texturais a partir da matriz de coocorrência (Gray Level Co-occurrence Matrix) e posterior classificação contextual; avaliação estatística de desempenho temático das imagens intensidade e texturais, isoladas e em grupos polarizados. Dentre os vários resultados alcançados, foi verificado que o grupo formado somente pelas imagens intensidade apresentou o melhor desempenho, comparado àqueles contendo os atributos texturais. Nesta separabilidade, estavam envolvidas as classes de floresta, floresta aluvial, reflorestamento, savana, pasto e queimada, obtendo-se 66% de acurácia total e valor Kappa de 0,55. Os resultados mostraram que as imagens de banda X do COSMO-SkyMed, modo StripMap (Ping-Pong), multipolarizadas, têm potencial moderado para a caracterização e monitoramento da dinâmica de uso e cobertura da terra na Amazônia brasileira.
Resumo:
A ocupação e consolidação do território na Amazônia apresentam diferentes características relacionadas à dinâmica das conversões de uso e cobertura da terra, que podem ser analisadas utilizando imagens orbitais de sensoriamento remoto. O objetivo do presente trabalho foi avaliar os produtos de detecção de mudanças gerados por análise de vetor de mudança (AVM) e subtração de imagens, a partir de imagens-fração derivadas das imagens ópticas TM/Landsat, para o estudo das conversões de uso e cobertura da terra presentes em área de colonização agrícola na região sudeste de Roraima. Analisaram-se as imagens de mudança provenientes da aplicação do AVM (magnitude, alfa e beta) e da subtração das imagens-fração (solo, sombra e vegetação) quanto à sua capacidade de identificar e discriminar as conversões existentes, de acordo com levantamento de campo. Foram testados dois algoritmos de classificação de imagens do tipo supervisionado, Bhattacharyya e Support Vector Machine. Foram feitos agrupamentos para otimizar a identificação das conversões nas classificações testadas. Houve melhor desempenho do classificador por regiões Bhattacharyya na discriminação das conversões. A utilização das imagens-diferença das frações como informação de entrada para o classificador apresentou qualidade de classificação muito boa ou excelente, sendo superior às classificações utilizando os produtos AVM, isoladamente ou em conjunto com as imagens-diferença.
Resumo:
Resumo: O objetivo deste trabalho foi desenvolver um método para identificação e monitoramento, em tempo quase real, de áreas agrícolas cultivadas com lavouras temporárias de verão, com uso de imagens orbitais Modis, no Estado do Rio Grande do Sul. A metodologia foi denominada detecção de áreas agrícolas em tempo quase real (DATQuaR) e utiliza imagens do sensor Modis referentes aos índices de vegetação (IVs) EVI e NDVI, disponibilizadas em composições de 16 dias. Foram utilizadas quatro métricas para agregar os valores de IVs por pixel, dentro dos períodos bimensais avaliados: média, máximo, mínimo e mediana. Para gerar as imagens (ImDATQuaR), a imagem agregada para o período imediatamente anterior foi subtraída da imagem agregada para o período em monitoramento. Essas imagens foram classificadas por meio de fatiamento e comparadas às classes de referência obtidas pela interpretação visual de pixels aleatorizados em imagens Landsat. Cada ImDATQuaR gerou dois mapas DATQuaR: um com filtragem de moda com janela 3x3 pixels e outro sem filtragem. O melhor mapa DATQuaR é produzido com uso de imagens EVI e filtragem - ao se subtrair a imagem de mínimo valor para o período anterior da imagem de máximo valor para o período monitorado - e atinge concordâncias com a referência superiores a 81%.
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
Forest structure determines light availability for understorey plants. The structure of lowland Amazonian forests is known to vary over long edaphic gradients, but whether more subtle edaphic variation also affects forest structure has not beenresolved. In western Amazonia, the majority of non-flooded forests grow on soils derived either from relatively fertile sediments of the Pebas Formation or from poorer sediments of the Nauta Formation. The objective of this study was to compare structure and light availability in the understorey of forests growing on these two geological formations. We measured canopy openness and tree stem densities in three size classes in northeastern Peru in a total of 275 study points in old-growth terra firme forests representing the two geological formations. We also documented variation in floristic composition (ferns, lycophytes and the palm Iriartea deltoidea) and used Landsat TM satellite image information to model the forest structural and floristic features over a larger area. The floristic compositions of forests on the two formations were clearly different, and this could also be modelled with the satellite imagery. In contrast, the field observations of forest structure gave only a weak indication that forests on the Nauta Formation might be denser than those on the Pebas Formation. The modelling of forest structural features with satellite imagery did not support this result. Our results indicate that the structure of forest understorey varies much less than floristic composition does over the studied edaphic difference.
Resumo:
ABSTRACTThe Amazon várzeas are an important component of the Amazon biome, but anthropic and climatic impacts have been leading to forest loss and interruption of essential ecosystem functions and services. The objectives of this study were to evaluate the capability of the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) algorithm to characterize changes in várzeaforest cover in the Lower Amazon, and to analyze the potential of spectral and temporal attributes to classify forest loss as either natural or anthropogenic. We used a time series of 37 Landsat TM and ETM+ images acquired between 1984 and 2009. We used the LandTrendr algorithm to detect forest cover change and the attributes of "start year", "magnitude", and "duration" of the changes, as well as "NDVI at the end of series". Detection was restricted to areas identified as having forest cover at the start and/or end of the time series. We used the Support Vector Machine (SVM) algorithm to classify the extracted attributes, differentiating between anthropogenic and natural forest loss. Detection reliability was consistently high for change events along the Amazon River channel, but variable for changes within the floodplain. Spectral-temporal trajectories faithfully represented the nature of changes in floodplain forest cover, corroborating field observations. We estimated anthropogenic forest losses to be larger (1.071 ha) than natural losses (884 ha), with a global classification accuracy of 94%. We conclude that the LandTrendr algorithm is a reliable tool for studies of forest dynamics throughout the floodplain.
Resumo:
The dynamics of the bird community in a small forest fragment was evaluated along seven years in relation to changes in the surrounding landscape. The study area is an Araucaria forest fragment in Southern Brazil (state of Paraná). The sampling period covered the years 1988 through 1994 and the mark-release-recapture method was utilized. The landscape analysis was based on Landsat TM images, and changes in exotic tree plantations, native forest, open areas (agriculture, pasture, bare soil, and abandoned field), and "capoeira"(native vegetation < 2 m) were quantified. The relationship between landscape changes and changes in abundance diversity of forest birds, open-area birds, forest-edge birds, and bamboo specialists was evaluated. Richness estimates were run for each year studied. The richness recorded in the study area comprised 96 species. The richness estimates were 114, 118 and 110 species for Chao 1, Jackknife 1 and Bootstrap, respectively. The bird community varied in species richness, abundance and diversity from year to year. As for species diversity, 1991, 1993 and 1994 were significantly different from the other years. Changes in the landscape contributed to the increase in abundance and richness for the groups of forest, open-area and bamboo-specialist species. An important factor discussed was the effect of the flowering of "taquara" (Poaceae), which contributed significantly to increasing richness of bamboo seed eaters, mainly in 1992 and 1993. In general, the results showed that landscape changes affected the dynamics and structure of the bird community of this forest fragment over time, and proved to have an important role in conservation of the avian community in areas of intensive forestry and agricultural activities.
Resumo:
Este trabalho é uma seleção interessante de imagens dinâmicas do esôfago e de curvas de atividade/tempo, variando da motilidade normal até o extremo oposto, a acalásia em estado avançado. A técnica é a usual: quatro horas de jejum, com restrição de fumo, álcool e cafeína; incidência anterior; imagens de 0,5 segundo durante dois minutos, região da boca ao fundo gástrico, seguida de imagem plana de 20 segundos da mesma região (tempo de trânsito normal: < 10 segundos). A coletânea é baseada em vinte anos de experiência empregando uma sistematização com vários parâmetros de análise que permite discriminar pacientes com tempo total de trânsito normal.