37 resultados para INDUCED LUTEINIZING-HORMONE
Resumo:
Twelve female ponies were examined daily for 30 days and classified as ovulating (OV; N = 6; 197 ± 6 kg) or prepubertal (PP; N = 6; 196 ± 9 kg). Follicles were detected by ultrasound and gonadotropins quantified by radioimmunoassay. The mean diameter of the largest follicles was significantly larger in OV (38 ± 1 mm) than in PP (26 ± 2 mm) but there was no difference between groups in the size of the second largest follicle. There were more small follicles (<24 mm) in the PP than in the OV group, but PP fillies had a smaller number of follicles >29 mm than the OV fillies. Follicle-stimulating hormone (FSH) levels did not differ between groups but PP fillies had lower luteinizing hormone (LH) peak (8 ± 1 ng/ml) and basal (4 ± 0.5 ng/ml) levels, lower peak magnitude (2 ± 0.2 ng/ml) and period average (5 ± 0.6 ng/ml) than OV fillies (32 ± 4.5, 8 ± 1.2, 17.1 ± 6, and 15 ± 2.3 ng/ml, respectively). The PP group, in contrast to the OV group, showed no relationship between FSH surge and follicle wave emergence. We conclude that an LH concentration higher than 8 ng/ml is needed for follicle growth to a preovulatory size. Wave emergence and FSH secretion seem to be independent events, probably due to an inhibitory neural system in these PP animals. PP fillies may provide a physiological model for the study of follicle wave emergence which apparently does not depend on gonadotropin levels.
Resumo:
The causes of luteal phase progesterone deficiency in polycystic ovary syndrome (PCOS) are not known. To determine the possible involvement of hyperinsulinemia in luteal phase progesterone deficiency in women with PCOS, we examined the relationship between progesterone, luteinizing hormone (LH) and insulin during the luteal phase and studied the effect of metformin on luteal progesterone levels in PCOS. Patients with PCOS (19 women aged 18-35 years) were treated with metformin (500 mg three times daily) for 4 weeks prior to the test cycle and throughout the study period, and submitted to ovulation induction with clomiphene citrate. Blood samples were collected from control (N = 5, same age range as PCOS women) and PCOS women during the late follicular (one sample) and luteal (3 samples) phases and LH, insulin and progesterone concentrations were determined. Results were analyzed by one-way analysis of variance (ANOVA), Duncan's test and Karl Pearson's coefficient of correlation (r). The endocrine study showed low progesterone level (4.9 ng/ml) during luteal phase in the PCOS women as compared with control (21.6 ng/ml). A significant negative correlation was observed between insulin and progesterone (r = -0.60; P < 0.01) and between progesterone and LH (r = -0.56; P < 0.05) concentrations, and a positive correlation (r = 0.83; P < 0.001) was observed between LH and insulin. The study further demonstrated a significant enhancement in luteal progesterone concentration (16.97 ng/ml) in PCOS women treated with metformin. The results suggest that hyperinsulinemia/insulin resistance may be responsible for low progesterone levels during the luteal phase in PCOS. The luteal progesterone level may be enhanced in PCOS by decreasing insulin secretion with metformin.
Resumo:
Precocene II, added to the meal of fourth-instar larvae of Rhodnius prolixus (25 mug/ml of blood), induced an in crease in the duration of the molting cycle. This effect was related to the decrease of both the nuclear area of the prothoracic gland cells and the mitotic activity in epidermal cellS. juvenile hormone analogue applied topically (60 mug/insect) together with Precocene II treatment avoided atrophy of the prothoracic glands and induced a higher number of epidermal mitosis accelerating the time of subsequent ecdysis. A possible relationship between juvenile hormone and production of ecdysone is discussed.
Resumo:
The present study was designed to evaluate the differences in the coronary vasodilator actions of serotonin (5-HT) in isolated heart obtained from naive or castrated male and female rats that were treated with either estrogen or testosterone. Hearts from 12 groups of rats were used: male and female naive animals, castrated, castrated and treated with 17ß-estradiol (0.5 µg kg-1 day-1) for 7 or 30 days, and castrated and treated with testosterone (0.5 mg kg-1 day-1) for 7 or 30 days. After treatment, the vascular reactivity of the coronary bed was evaluated. Baseline coronary perfusion pressure (CPP) was determined and dose-response curves to 5-HT were generated. Baseline CPP differed between male (70 ± 6 mmHg, N = 10) and female (115 ± 6 mmHg, N = 12) naive rats. Maximal 5-HT-induced coronary vasodilation was higher (P<0.05) in naive female than in naive male rats. In both sexes, 5-HT produced endothelium-dependent coronary vasodilation. After castration, there was no significant difference in baseline CPP between hearts obtained from male and female rats (75 ± 7 mmHg, N = 8, and 83 ± 5 mmHg, N = 8, respectively). Castration reduced the 5-HT-induced maximal vasodilation in female and male rats (P<0.05). Estrogen treatment of castrated female rats restored (P<0.05) the vascular reactivity. In castrated male rats, 30 days of estrogen treatment increased (P<0.05) the responsiveness to 5-HT. The endothelium-dependent coronary vasodilator actions of 5-HT are greater in female rats and are modulated by estrogen. A knowledge of the mechanism of action of estrogen on coronary arteries could aid in the development of new therapeutic strategies and potentially decrease the incidence of cardiovascular disease in both sexes.
Resumo:
Precocious adults from 2nd and 3rd instar larvae of the desert locust Schistocerca gregaria were used to assess the competence of their fat body to synthesize DNA in response to a juvenile hormone analog (JHA), hydoprene. Autoradiographic studies show that JHA stimulates DNA synthesis since a significant proportion of the fat body nuclei are labelled after treatment with 100 or 200 µg of JHA. Maximum DNA synthesis occurs 24 h after treatment with 100 µg of JHA. The nuclear ploidy classes of the precocious adults from 3rd larvae are similar to those of 1-d-old normal adults, but treatemnt of these precociuos adults with µg of JHA doubles the DNA content resulting in enhanced ploidy classes which resemble those of 10-d-old normal females. In the precocious adults that emerged from 2nd instar larvae the ploidy classes are higher than those of 1-d-old normal adults, and treatment of these precocious adults with JHA results in a further increase in the DNA content of the fat body nuclei leading to the formation of high percentages of 16C and 32C nuclei. The results of these studies suggest that any model on the mode of action of JH should recognize this phenomenon of JH-induced polyploidization in the fat body nuclei.
Resumo:
Applied topically to larvae of Rhodnius prolixus Stal, Triatoma infestans (Klug) and Panstrongylus herreri Wygodzinsky, vectors of Trypanosoma cruzi, the causative agent of Chagas'disease, a synthetic, furan-containing anti-juvenile hormonal compound, 2-(2-ethoxyethoxy)ethyl furfuryl ether induced a variety of biomorphological alterations, including precocious metamorphosis into small adultoids with adult abdominal cuticle, ocelli, as well as rudimentary adultoid wings. Some adultoids died during ecdysis and were confined within the old cuticle. The extension of these biomorphological responses is discussed in terms of the complexity of the action of anti-juvenile hormonal compounds during the development of triatomines
Resumo:
a-Melanocyte-stimulating hormone (a-MSH; 0.6 and 3 nmol) microinjected into the anteroventral region of the third ventricle (AV3V) induced a significant increase in diuresis without modifying natriuresis or kaliuresis. Intraperitoneal (ip) injection of a-MSH (3 and 9.6 nmol) induced a significant increase in urinary sodium, potassium and water excretion. Intraperitoneal (3 and 4.8 nmol) or iv (3 and 9.6 nmol) administration of a-MSH did not induce any significant changes in plasma atrial natriuretic peptide (ANP), suggesting that the natriuresis, kaliuresis and diuresis induced by the systemic action of a-MSH can be dissociated from the increase in plasma ANP. These preliminary results suggest that a-MSH may be involved in a g-MSH-independent mechanism of regulation of hydromineral metabolism
Resumo:
Thyroid hormone (T3) is essential to normal brain development. Previously, we have shown that T3 induces cerebellar astrocyte proliferation. This effect is accompanied by alteration in glial fibrillary acidic protein (GFAP) and fibronectin organization. In the present study, we report that the C6 glioma cell line, which expresses GFAP and is classified as an undifferentiated astrocytic cell type, is a target for T3 action. The C6 monolayers were treated with 50 nM T3 for 3 days, after which the cells were maintained for 2 days without medium changes. In C6 cells, T3 induced the expression of proteins of 107, 73 and 62 kDa. The hormone also up-regulated protein bands of 100 (+50%), 37 (+50%) and 25.5 kDa (+50%) and down-regulated proteins of 94 (-100%), 86.5 (-100%), 68 (-100%), 60 (-100%), 54 (-33%), 51 (-33%) and 43.5 kDa (-33%). We suggest, on the basis of molecular mass, that the 54-, 51- and 43.5-kDa proteins could be the cytoskeletal proteins vimentin, GFAP and actin, respectively. The down-regulation of these proteins may be involved in the effects of thyroid hormone on C6 differentiation.
Resumo:
Girolando (Gir x Holstein) is a very common dairy breed in Brazil because it combines the rusticity of Gir (Bos indicus) with the high milk yield of Holstein (Bos taurus). The ovarian follicular dynamics and hormonal treatments for synchronization of ovulation and timed artificial insemination were studied in Girolando heifers. The injection of a gonadotrophin-releasing hormone (GnRH) agonist was followed 6 or 7 days (d) later by prostaglandin F2a (PGF2a). Twenty-four hours after PGF2a injection either human chorionic gonadotropin (hCG, GPh-d6 and GPh-d7 groups) or estradiol benzoate (EB, GPE-d6 and GPE-d7 groups) was administered to synchronize ovulation and consequently allow timed artificial insemination (AI) 24 and 30 h after hCG and EB injection, respectively. Follicular dynamics in Girolando heifers was characterized by the predominance of three follicular waves (71.4%) with sizes of dominant follicles (10-13 mm) and corpus luteum (approximately 20 mm) similar to those for Bos indicus cattle. In the GnRH-PGF-hCG protocol, hCG administration induced earlier ovulation (67.4 h, P<0.01) compared to the control group (GnRH-PGF) and a better synchronization of ovulation, since most of it occurred within a period of 12 to 17 h. Pregnancy rate after timed AI was 42.8 (3/7, GPh-d6) to 50% (7/14, GPh-d7). In contrast, estradiol benzoate (GnRH-PGF-EB protocol) synchronized ovulation of only 5 of 11 heifers from the GPE-d7 group and of none (0/7) from the GPE-d6 group, which led to low pregnancy rates after timed AI (27.3 and 0%, respectively). However, since a small number of Girolando heifers was used to determine pregnancy rates in the present study, pregnancy rates should be confirmed with a larger number of animals.
Resumo:
Oxytocin (OT), a nonapeptide, was the first hormone to have its biological activities established and chemical structure determined. It was believed that OT is released from hypothalamic nerve terminals of the posterior hypophysis into the circulation where it stimulates uterine contractions during parturition, and milk ejection during lactation. However, equivalent concentrations of OT were found in the male hypophysis, and similar stimuli of OT release were determined for both sexes, suggesting other physiological functions. Indeed, recent studies indicate that OT is involved in cognition, tolerance, adaptation and complex sexual and maternal behaviour, as well as in the regulation of cardiovascular functions. It has long been known that OT induces natriuresis and causes a fall in mean arterial pressure, both after acute and chronic treatment, but the mechanism was not clear. The discovery of the natriuretic family shed new light on this matter. Atrial natriuretic peptide (ANP), a potent natriuretic and vasorelaxant hormone, originally isolated from rat atria, has been found at other sites, including the brain. Blood volume expansion causes ANP release that is believed to be important in the induction of natriuresis and diuresis, which in turn act to reduce the increase in blood volume. Neurohypophysectomy totally abolishes the ANP response to volume expansion. This indicates that one of the major hypophyseal peptides is responsible for ANP release. The role of ANP in OT-induced natriuresis was evaluated, and we hypothesized that the cardio-renal effects of OT are mediated by the release of ANP from the heart. To support this hypothesis, we have demonstrated the presence and synthesis of OT receptors in all heart compartments and the vasculature. The functionality of these receptors has been established by the ability of OT to induce ANP release from perfused heart or atrial slices. Furthermore, we have shown that the heart and large vessels like the aorta and vena cava are sites of OT synthesis. Therefore, locally produced OT may have important regulatory functions within the heart and vascular beds. Such functions may include slowing down of the heart or the regulation of local vascular tone.
Resumo:
The purpose of the present study was to modulate the secretion of insulin and glucagon in Beagle dogs by stimulation of nerves innervating the intact and partly dysfunctional pancreas. Three 33-electrode spiral cuffs were implanted on the vagus, splanchnic and pancreatic nerves in each of two animals. Partial dysfunction of the pancreas was induced with alloxan. The nerves were stimulated using rectangular, charge-balanced, biphasic, and constant current pulses (200 µs, 1 mA, 20 Hz, with a 100-µs delay between biphasic phases). Blood samples from the femoral artery were drawn before the experiment, at the beginning of stimulation, after 5 min of stimulation, and 5 min after the end of stimulation. Radioimmunoassay data showed that in the intact pancreas stimulation of the vagal nerve increased insulin (+99.2 µU/ml) and glucagon (+18.7 pg/ml) secretion and decreased C-peptide secretion (-0.15 ng/ml). Splanchnic nerve stimulation increased insulin (+1.7 µU/ml), C-peptide (+0.01 ng/ml), and glucagon (+50 pg/ml) secretion, whereas pancreatic nerve stimulation did not cause a marked change in any of the three hormones. In the partly dysfunctional pancreas, vagus nerve stimulation increased insulin (+15.5 µU/ml), glucagon (+11 pg/ml), and C-peptide (+0.03 ng/ml) secretion. Splanchnic nerve stimulation reduced insulin secretion (-2.5 µU/ml) and increased glucagon (+58.7 pg/ml) and C-peptide (+0.39 ng/ml) secretion, and pancreatic nerve stimulation increased insulin (+0.2 µU/ml), glucagon (+5.2 pg/ml), and C-peptide (+0.08 ng/ml) secretion. It was concluded that vagal nerve stimulation can significantly increase insulin secretion for a prolonged period of time in intact and in partly dysfunctional pancreas.
Resumo:
The uncoupling protein UCP3 belongs to a family of mitochondrial carriers located in the inner mitochondrial membrane of certain cell types. It is expressed almost exclusively at high levels in skeletal muscle and its physiological role has not been fully determined in this tissue. In the present study we have addressed the possible interaction between a hypercaloric diet and thyroid hormone (T3), which are strong stimulators of UCP3 gene expression in skeletal muscle. Male Wistar rats weighing 180 ± 20 g were rendered hypothyroid by thyroidectomy and the addition of methimazole (0.05%; w/v) to drinking water after surgery. The rats were fed a hypercaloric cafeteria diet (68% carbohydrates, 13% protein and 18% lipids) for 10 days and sacrificed by decapitation. Subsequently, the gastrocnemius muscle was dissected, total RNA was isolated with Trizol and UCP3 gene expression was determined by Northern blotting using a specific probe. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by the Student-Newman-Keuls post-test. Skeletal muscle UCP3 gene expression was decreased by 60% in hypothyroid rats and UCP3 mRNA expression was increased 70% in euthyroid cafeteria-fed rats compared to euthyroid chow-fed animals, confirming previous studies. Interestingly, the cafeteria diet was unable to stimulate UCP3 gene expression in hypothyroid animals (40% lower as compared to euthyroid cafeteria-fed animals). The results show that a hypercaloric diet is a strong stimulator of UCP3 gene expression in skeletal muscle and requires T3 for an adequate action.
Resumo:
Increased levels of androgens in postmenopausal women are considered to be a risk factor for breast cancer. Testosterone, alone or in combination with estrogen, induces epithelial dysplasia and mammary tumors in Noble rats. Since this model of hormone-induced neoplasia has not been reported in other rat strains, we studied the effect of testosterone on the mammary gland morphology of female Wistar rats. Sixty adult, non-castrated, female Wistar rats were implanted in the dorsum midline with a silicone tube containing 50 mg testosterone (testosterone propionate in 30 animals and non-esterified testosterone in the remaining 30 animals) and 20 additional animals were implanted with empty tubes and used as control. Five animals per group were killed 30, 60, 90, 120, 150, and 180 days after implantation, and the mammary glands were dissected, fixed and embedded in paraffin. Histological sections were then stained with hematoxylin and eosin and picrosyrius red for collagen visualization. Morphological and morphometric analysis demonstrated ductal proliferation and acinotubular differentiation with secretory activity in all treated animals, peaking at 90 days of androgen exposure. After 90 days the proliferation of acinar epithelial cells was evident, but there was a progressive reduction of secretory differentiation and an increase in intralobular collagen fibers. There was no morphological evidence of dysplastic changes or other pre-neoplastic lesions. Testosterone treatment applied to adult, non-castrated female Wistar rats induced a mammary gland hyperplasia resembling the lactating differentiation, with progressive reduction in secretory differentiation.
Resumo:
In addition to lipid-lowering and cardiovascular protective actions, statins may have beneficial effects on insulin sensitivity. The objective of the present study was to evaluate the effect of simvastatin therapy on insulin resistance and on leptin, adiponectin, and C-reactive protein (CRP) levels, as compared to metformin, in overweight pre-diabetic subjects. Forty-one subjects with BMI >25 kg/m² and impaired fasting glucose or impaired glucose tolerance were randomized to take simvastatin, 20 mg/day (N = 20) or metformin, 1.7 g/day (N = 21) for 16 weeks. Blood samples for the determination of metabolic, hormonal, and inflammatory parameters were obtained at baseline and after each treatment. After metformin therapy, significant reductions in mean BMI and waist circumference were observed, and after simvastatin treatment LDL and triglyceride levels were significantly reduced. Insulin resistance determined by the homeostasis model assessment decreased only with metformin. Independently of the type of medication, a significant decrease in CRP levels was detected from baseline to the end of the study. CRP showed a mean reduction of 0.12 ± 0.04 mg/dL (P = 0.002) over time. No change in leptin or adiponectin levels was induced by any therapy. The data suggest that a low dose of simvastatin does not affect insulin resistance in overweight pre-diabetic subjects and has no effect on leptin or adiponectin levels. Further studies including a larger sample size, higher doses of statins, and a placebo control group are necessary to confirm the present data.
Resumo:
Data about the impact of bariatric surgery (BS) and subsequent weight loss on bone are limited. The objective of the present study was to determine bone mineral density (BMD), bone remodeling metabolites and hormones that influence bone trophism in premenopausal women submitted to BS 9.8 months, on average, before the study (OGg, N = 16). The data were compared to those obtained for women of normal weight (CG, N = 11) and for obese women (OG, N = 12). Eight patients in each group were monitored for one year, with the determination of BMD, of serum calcium, phosphorus, magnesium, parathyroid hormone, 25-hydroxyvitamin D, insulin-like growth factor-I (IGF-I) and osteocalcin, and of urinary calcium and deoxypyridinoline. The biochemical determinations were repeated every three months in the longitudinal study and BMD was measured at the end of the study. Parathyroid hormone levels were similar in the three groups. IGF-I levels (CG = 332 ± 62 vs OG = 230 ± 37 vs OGg = 128 ± 19 ng/mL) were significantly lower in the operated patients compared to the non-operated obese women. Only OGg patients presented a significant fall in BMD of 6.2% at L1-L4, of 10.2% in the femoral neck, and of 5.1% in the forearm. These results suggest that the weight loss induced by BS is associated with a significant loss of bone mass even at sites that are not influenced by weight overload, with hormonal factors such as IGF-I being associated with this process.