37 resultados para Gsh
Resumo:
The weaning period of piglets is characterized by physiological alterations, such as decreased weight gain, increased reactive oxygen species (ROS) and increased serum cortisol levels with possible effects on the immune response. The effect of parenteral administration of vitamins A, D and E on production performance, oxidative metabolism, and the function of polymorphonuclear leukocytes (PMNLs) was assessed in piglets during the weaning period. The sample was comprised of 20 male piglets that were given an injectable ADE vitamin combination (135,000 IU vitamin A, 40,000 IU vitamin D and 40mg vitamin E/ animal) at 20 and 40 days of age. Weight gain, concentration of reduced glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) and the microbicidal and phagocytic activity of PMNLs were assessed. No difference was observed in the average piglet weight during the study; however, a greater percentage of weight gain was observed after weaning in the treated group. The concentrations of GSH and SOD did not differ between groups, although lipid peroxidation was greater in the control group at 60 days of age. The investigated variables of oxidative metabolism were correlated as follows: -0.41 for GSH and MDA, -0.54 for GSH and SOD and 0.34 for MDA and SOD. The intensity of intracellular ROS production, the percentage of ROS-producing PMNLs and the intensity of phagocytosis by PMNLs did not differ between treatment groups. Administration of the injectable ADE combination improved the percentage of weight gain between 20 and 40 days of age, decreased oxidative stress at 60 days of age and did not influence the function of PMNLs in piglets.
Resumo:
O fígado desempenha uma função central no metabolismo devido à sua interposição entre o trato digestivo e a circulação geral do organismo. Ele é também o principal órgão envolvido na biotransformação de substâncias exógenas (xenobióticos), com capacidade de converter compostos hidrofóbicos em hidrossolúveis, mais facilmente eliminados pelo organismo. O gossipol é uma substância fenólica tóxica presente na semente de algodão (Gossypium sp). Com o objetivo de estudar os mecanismos envolvidos na hepatotoxicidade do gossipol avaliou-se os seus efeitos no sistema antioxidante do fígado de ratos no que diz respeito ao estresse oxidativo e aspectos histopatológicos. Foram utilizados ratos machos da linhagem Wistar, separados em dois grupos, sendo que um recebeu óleo de canola (veículo, grupo Controle) e o outro recebeu gossipol na dosagem de 40 mg/kg de peso vivo do animal por 15 dias (grupo Tratado). O tratamento com gossipol promoveu alterações na atividade sérica das enzimas marcadoras de dano hepático e um significativo estresse oxidativo caracterizado pela diminuição nos níveis da glutationa reduzida (GSH) e consequente aumento da glutationa oxidada (GSSG), incluindo, ainda, danos à membrana plasmática e de organelas demonstrados pela peroxidação lipídica. O resultado da avaliação histopatológica demonstrou degeneração dos hepatócitos.
Resumo:
Horses used for the game of polo experience abrupt and frequent changes in exercise intensity. To meet this variable energy demand, the horses use both aerobic and anaerobic pathways in varying proportions and intensities. In this context, there must be a balance between the formation of reactive oxygen species (ROS) and the action of antioxidants to prevent oxidative stress and its consequences. The effect of supplementation with an ADE vitamin complex on oxidative metabolism was evaluated in 18 crossbred horses randomly divided between a treated group (TG) and a control group (CG). The TG animals received the ADE vitamin complex (1mL/50 kg of body weight) by deep intramuscular injection at 30 and 15 days before the game. The CG horses received 10ml of saline by the same administration route and schedule. During the polo match, the animals played for a total of 7.5 min. Blood samples were collected on the same days as the treatments were administered, and immediately before and at 15, 90 and 180 minutes after the game. The concentrations of creatine phosphokinase (CK), lactate dehydrogenase (LDH), lactate, glucose, aspartate aminotransferase (AST), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured in the blood samples. After the game, the TG demonstrated higher levels of AST, lactate and glucose than the CG, suggesting more efficient energy use by the treated animals. The higher GSH and lower lactate levels in the TG before the game suggest the presence of a greater antioxidant supply in the treated animals. The maintenance of the MDA levels indicates that neither of the groups exhibited oxidative stress.
Resumo:
O ambiente urbano pode gerar condições de estresse oxidativo nas plantas, levando à estimulação de antioxidantes como ácido ascórbico (AA), tióis (Ti), peroxidases (POD) e superóxido dismutase (SOD), em diferentes níveis, de acordo com sua capacidade de tolerar tais condições. Este estudo, em sua primeira fase, buscou conhecer o perfil destas defesas em folhas de plantas jovens de C. echinata com diferentes graus de desenvolvimento. Os níveis dos antioxidantes foram similares em todas as folhas analisadas. Em uma segunda fase, tais antioxidantes e a glutationa (GSH) foram avaliados em 130 plantas mantidas em casa de vegetação com monitoramento constante de temperatura, umidade relativa e irradiância, por um período de 18 meses, para estabelecer se variações sazonais nessas defesas ocorrem em resposta a fatores climáticos. Nesse período, os antioxidantes foliares foram analisados a cada três meses. Em geral, a concentração de AA e a atividade da POD foram altas em C. echinata, quando comparadas com as de outras espécies arbóreas tropicais. Houve variações nas defesas ao longo do tempo. A concentração de GSH e a atividade da POD mostraram ser influenciadas por mudanças na temperatura e a SOD foi estimulada em resposta à temperatura e à umidade relativa.
Resumo:
Gamma-glutamyltranspeptidase (GGT-EC 2.3.2.2) activity and glutathione (GSH) content were measured in livers of female weanling Wistar rats (N = 5-18), submitted to rice-and-bean diets (13 and 6% w/w protein), both supplemented or not with DL-methionine (0.5 and 0.23 g/100 g dry diet, respectively). After 28 days, the rats on the rice-and-bean diets showed significantly higher levels (four times higher) of liver GGT activity and a concomitant 50% lower concentration of liver GSH in comparison with control groups feeding on casein. The addition of DL-methionine to rice-and-bean diets significantly increased the liver GSH content, which reached levels 50% higher than those found in animals on casein diets. The increase in GSH was accompanied by a decrease in liver GGT activity, which did not reach levels as low as those observed in the control groups. No significant correlation could be established between GGT and GSH changes under the present experimental conditions. Linear correlation analysis only revealed that in animals submitted to unsupplemented rice-and-bean diets GSH concentration was positively associated (P<0.05) with weight gain, food intake and food efficiency. GGT, however, was negatively correlated (P<0.05) with food intake only, and exclusively for supplemented rice-and-bean diets. The high levels of GGT activity observed in the present study for rats receiving a rice-and-bean mixture could be a result of the poor quality of these diets associated with their deficiency in sulfur amino acids. The results also suggest that diet supplementation with methionine could be important in the reduction of the deleterious effects of GSH depletion by restoring the intracellular concentration of this tripeptide.
Resumo:
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.
Resumo:
Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%). Removal of the gonads in both males and females (comparison between castrated groups) increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48%) CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.
Resumo:
The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg) on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6) presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) compared to normal rats (N = 6). Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1) and glibenclamide (600 µg kg-1 day-1), a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group) and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals.
Resumo:
In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD) of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH) in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa). The Michaelis-Menten constants (Km: 55 µM) for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM) were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively). A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.
Resumo:
The aim of the present study was to evaluate the effect of Ginkgo biloba treatment (EGb 761, 200 mg kg-1 day-1) administered from day 0 to 20 of pregnancy on maternal reproductive performance and on the maternal and fetal liver antioxidant systems of streptozotocin-induced diabetic Wistar rats. On day 21 of pregnancy, the adult rats (weighing approximately 250 ± 50 g, minimum number = 13/group) were anesthetized to obtain maternal and fetal liver samples for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and total glutathione (GSH-t) determinations. The uterus was weighed with its contents. The diabetic (G3) and treated diabetic (G4) groups of rats presented significant maternal hyperglycemia, reduced term pregnancy rate, impaired maternal reproductive outcome and fetal-placental development, decreased GSH-Px (G3 = G4 = 0.6 ± 0.2) and SOD (G3 = 223.0 ± 84.7; G4 = 146.1 ± 40.8), and decreased fetal CAT activity (G3 = 22.4 ± 10.6; G4 = 34.4 ± 14.1) and GSH-t (G3 = G4 = 0.3 ± 0.2), compared to the non-diabetic groups (G1, untreated control; G2, treated). For G1, maternal GSH-Px = 0.9 ± 0.2 and SOD = 274.1 ± 80.3; fetal CAT = 92.6 ± 82.7 and GSH-t = 0.6 ± 0.5. For G2, G. biloba treatment caused no toxicity and did not modify maternal or fetal-placental data. EGb 761 at the nontoxic dose used (200 mg kg-1 day-1), failed to modify the diabetes-associated increase in maternal glycemia, decrease in pregnancy rate, decrease in antioxidant enzymes, and impaired fetal development when the rats were treated throughout pregnancy (21 days).
Resumo:
The aim of the present study was to evaluate the relationship between salivary oxidative stress and dental-oral health. Healthy young adults, matched for gender and age, with (N = 21, 10 men, mean age: 20.3 ± 1 years) and without (N = 16, 8 men, mean age: 21.2 ± 1.8 years) caries were included in this study. The World Health Organization (WHO) caries diagnostic criteria were used for determining the decayed, missing, filled teeth (DMFT) index. The oral hygiene and gingival status were assessed using the simplified oral hygiene index and gingival index, respectively. Unstimulated salivary total protein, glutathione (GSH), lipid peroxidation and total sialic acid levels, carbonic anhydrase activity, and salivary buffering capacity were determined by standard methods. Furthermore, salivary pH was measured with pH paper and salivary flow rate was calculated. Simplified oral hygiene index and gingival index were not significantly different between groups but DMFT scores were significant (P < 0.01). Only, GSH values were significantly different (P < 0.05) between groups (2.2 and 1.6 mg/g protein in young adults without caries and with caries, respectively). There was a significant negative correlation between DMFT and GSH (r = -0.391; P < 0.05; Pearson's correlation coefficient). Our results suggest that there is an association between caries history and salivary GSH levels.
Resumo:
(-)-∆9-Tetrahydrocannabinol (∆9-THC), a psychoactive component of marijuana, has been reported to induce oxidative damage in vivo and in vitro. In this study, we administered ∆9-THC to healthy C57BL/6J mice aged 15 weeks in order to determine its effect on hepatic redox state. Mice were divided into 3 groups: ∆9-THC (N = 10), treated with 10 mg/kg body weight ∆9-THC daily; VCtrl (N = 10), treated with vehicle [1:1:18, cremophor EL® (polyoxyl 35 castor oil)/ethanol/saline]; Ctrl (N = 10), treated with saline. Animals were injected ip twice a day with 5 mg/kg body weight for 10 days. Lipid peroxidation, protein carbonylation and DNA oxidation were used as biomarkers of oxidative stress. The endogenous antioxidant defenses analyzed were glutathione (GSH) levels as well as enzyme activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase (GPx) in liver homogenates. The levels of mRNA of the cannabinoid receptors CB1 and CB2 were also monitored. Treatment with ∆9-THC did not produce significant changes in oxidative stress markers or in mRNA levels of CB1 and CB2 receptors in the liver of mice, but attenuated the increase in the selenium-dependent GPx activity (Δ9-THC: 8%; VCtrl: 23% increase) and the GSH/oxidized GSH ratio (Δ9-THC: 61%; VCtrl: 96% increase), caused by treatment with the vehicle. Δ9-THC administration did not show any harmful effects on lipid peroxidation, protein carboxylation or DNA oxidation in the healthy liver of mice but attenuated unexpected effects produced by the vehicle containing ethanol/cremophor EL®.
Resumo:
Photodynamic therapy (PDT) mediated by oxidative stress causes direct tumor cell damage as well as microvascular injury. To improve this treatment new photosensitizers are being synthesized and tested. We evaluated the effects of PDT with 5,10,15,20-tetrakis(4-methoxyphenyl)-porphyrin (TMPP) and its zinc complex (ZnTMPP) on tumor levels of malondialdehyde (MDA), reduced glutathione (GSH) and cytokines, and on the activity of caspase-3 and metalloproteases (MMP-2 and -9) and attempted to correlate them with the histological alterations of tumors in 3-month-old male Wistar rats, 180 ± 20 g, bearing Walker 256 carcinosarcoma. Rats were randomly divided into five groups: group 1, ZnTMPP+irradiation (IR) 10 mg/kg body weight; group 2, TMPP+IR 10 mg/kg body weight; group 3, 5-aminolevulinic acid (5-ALA+IR) 250 mg/kg body weight; group 4, control, no treatment; group 5, only IR. The tumors were irradiated for 15 min with red light (100 J/cm², 10 kHz, 685 nm) 24 h after drug administration. Tumor tissue levels of MDA (1.1 ± 0.7 in ZnTMPP vs 0.1 ± 0.04 nmol/mg protein in control) and TNF-α (43.5 ± 31.2 in ZnTMPP vs 17.3 ± 1.2 pg/mg protein in control) were significantly higher in treated tumors than in controls. Higher caspase-3 activity (1.9 ± 0.9 in TMPP vs 1.1 ± 0.6 OD/mg protein in control) as well as the activation of MMP-2 (P < 0.05) were also observed in tumors. These parameters were correlated (Spearman correlation, P < 0.05) with the histological alterations. These results suggest that PDT activates the innate immune system and that the effects of PDT with TMPP and ZnTMPP are mediated by reactive oxygen species, which induce cell membrane damage and apoptosis.
Resumo:
Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g), were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight-1·day-1) both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05). Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day) and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL) towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2%) and estrous cycle remained extensive (26.7%), arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9%) and total antioxidant substances were enhanced within the ovaries (23.9%). Additionally, melatonin increased superoxide dismutase (21.3%), catalase (23.6%) and glutathione-reductase (14.8%) activities and the reducing power (10.2% GSH/GSSG ratio). We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.
Resumo:
Silybin, a natural antioxidant, has been traditionally used against a variety of liver ailments. To investigate its effect and the underlying mechanisms of action on non-alcoholic fatty liver in rats, we used 60 4-6-week-old male Sprague-Dawley rats to establish fatty liver models by feeding a high-fat diet for 6 weeks. Hepatic enzyme, serum lipid levels, oxidative production, mitochondrial membrane fluidity, homeostasis model assessment-insulin resistance index (HOMA-IR), gene and protein expression of adiponectin, and resistin were evaluated by biochemical, reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Compared with the model group, silybin treatment (26.25 mg·kg-1·day-1, started at the beginning of the protocol) significantly protected against high-fat-induced fatty liver by stabilizing mitochondrial membrane fluidity, reducing serum content of alanine aminotransferase (ALT) from 450 to 304 U/L, decreasing hepatic malondialdehyde (MDA) from 1.24 to 0.93 nmol/mg protein, but increasing superoxide dismutase (SOD) and glutathione (GSH) levels from 8.03 to 9.31 U/mg protein and from 3.65 to 4.52 nmol/mg protein, respectively. Moreover, silybin enhanced the gene and protein expression of adiponectin from 215.95 to 552.40, but inhibited that of resistin from 0.118 to 0.018. Compared to rosiglitazone (0.5 mg·kg-1·day-1, started at the beginning of the protocol), silybin was effective in stabilizing mitochondrial membrane fluidity, reducing SOD as well as ALT, and regulating gene and protein expression of adiponectin (P < 0.05). These results suggest that mitochondrial membrane stabilization, oxidative stress inhibition, as well as improved insulin resistance, may be the essential mechanisms for the hepatoprotective effect of silybin on non-alcoholic fatty liver disease in rats. Silybin was more effective than rosiglitazone in terms of maintaining mitochondrial membrane fluidity and reducing oxidative stress.