133 resultados para Gram-Positive Cocci
Resumo:
ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC)].RESULTS: The most common location of ulceration was the toe (54%), followed by the plantar surface (27%) and dorsal portion (19%). A total of 89 bacterial isolates were obtained from 30 patients. The infections were predominantly due to Gram-positive bacteria and polymicrobial bacteremia. The most commonly isolated Gram-positive bacteria were Staphylococcus aureus, followed by Staphylococcus saprophyticus, Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus pneumoniae. The most commonly isolated Gram-negative bacteria were Proteus spp. and Enterobacterspp., followed by Escherichia coli, Pseudomonasspp., and Citrobacterspp. Nine cases of methicillin-resistant Staphylococcus aureus (MRSA) had cefoxitin resistance, and among these MRSA isolates, 3 were resistant to vancomycin with the MIC technique. The antibiotic imipenem was the most effective against both Gram-positive and Gram-negative bacteria, and gentamicin was effective against Gram-negative bacteria.CONCLUSIONS: The present study confirmed the high prevalence of multidrug-resistant pathogens in diabetic foot ulcers. It is necessary to evaluate the different microorganisms infecting the wound and to know the antibiotic susceptibility patterns of the isolates from the infected wound. This knowledge is crucial for planning treatment with the appropriate antibiotics, reducing resistance patterns, and minimizing healthcare costs.
Resumo:
Endopleura uchi (Huber) Cuatrec. is an Amazon species traditionally used as treatment for inflammations and female disorders. Bergenin was isolated from ethyl acetate fraction of bark of E. uchi by using column chromatography over sephadex LH-20 and then silica gel 60 flash. Its structure was identified on the basis of its NMR spectra. The antimicrobial activity of bergenin and fractions of methanol extract of E. uchi were evaluated against ATCC microorganisms (Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans, C. guilliermondii, Aspergillus flavus, A. nidulans). Clinically isolated strains of all of these microorganisms, along with C. tropicalis, A. niger, Shigella sonnei, Serratia marcenses and Klebsiella pneumoniae were also evaluated. The growth inhibition caused by bergenin, extracts and fractions of E. uchi against ATCC microorganisms were similar to the inhibition to microorganisms clinically isolated. The ethyl acetate fraction and the isolate bergenin inhibit the growth of the yeasts C. albicans, C. tropicalis, and C. guilliermondii, but present lower activity against filamentous fungi Aspergillus flavus, A. nidulans, A. niger, and did not inhibit the Gram positive and Gram negative bacteria. The activity of the ethyl acetate fraction and bergenin are in agreement wit its high concentration found in bark extract of E. uchi. Moreover, the selective activity against three Candida species helps to understand its traditional use against infections that affect women.
Resumo:
Opportunistic infections, which affect acquired immunodeficiency syndrome (Aids) patients, are frequently disseminated and may cause bloodstream infections (BSI). The aim of this study was to evaluate the main causes of BSI in Aids patients with advanced stage of the disease, with special emphasis on the identification of fungemia. During a 21 months period, all patients with Aids (CD4 < 200) and febrile syndrome admitted to 3 university hospitals were systematically evaluated. For each patient presenting fever, a pair of blood cultures was collected and processed by using a commercial lysis-centrifugation system. One hundred and eleven patients (75 males) with a mean age of 36 years (median 33 years) and mean CD4 count of 64 cells/ml were included. Among the 111 patients evaluated we documented 54 episodes of BSI, including 46 patients with truly systemic infections and 8 episodes considered as contaminants. BSI were caused by gram-positive bacteria (43%), fungi (20%), gram-negative bacteria (15%), mycobacteria (15%), and mixed flora (7%). The crude mortality rate of our patients was 39%, being 50% for patients with BSI and 31% for the others. In conclusion, BSI are a common related to systemic infections on Aids patients with advanced stage of disease and is associated with a high rate of mortality.
Resumo:
The evaluation of the activity of the aqueous and ethyl acetate extracts of the leaves of Piper regnellii was tested against gram-positive and gram-negative bacteria. The aqueous extractdisplayed a weak activity against Staphylococcus aureus and Bacillus subtilis with minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of 1000 µg/ml. The ethyl acetate extract presented a good activity against S. aureus and B. subtilis with MIC and MBC at 15.62 µg/ml. In contrast to the relative low MICs for gram-positive bacteria, gram-negative bacteria were not inhibited by the extracts at concentrations < 1000 mg/ml. The ethyl acetate extract was fractionated on silica gel into nine fractions. The hexane and chloroform fractions were active against S. aureus (MIC at 3.9 µg/ml) and B. subtilis (MIC at 3.9 and 7.8 µg/ml, respectively). Using bioactivity-directed fractionation, the hexane fraction was rechromatographed to yield the antimicrobial compounds 1, 2, 5, and 6identified as eupomatenoid-6, eupomatenoid-5, eupomatenoid-3, and conocarpan, respectively. The pure compounds 1 and 2 showed a good activity against S. aureus with MIC of 1.56 µg/ml and 3.12 µg/ml, respectively. Both compounds presented MIC of 3.12 µg/ml against B. subtilis. The pure compound 6 named as conocarpan was quite active against S. aureus and B. subtilis with MIC of 6.25 µg/ml. The antibacterial properties of P. regnellii justify its use in traditional medicine for the treatment of wounds, contaminated through bacteria infections.
Resumo:
Twelve extracts obtained from nine plants belonging to six different genera of Clusiaceae were analyzed against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria using the microdilution broth assay. Tovomita aff. longifolia, T. brasiliensis, Clusia columnaris, Garcinia madruno, Haploclathra paniculata, and Caraipa grandifolia extracts showed significant results against the bacteria. The organic extract obtained from the leaves of T. aff. longifolia showed minimal inhibitory concentration (MIC) = 70 µg/ml and minimal bactericidal concentration (MBC) = 90 µg/ml against E. faecalis and the organic extract made with the stem of C. columnaris showed MIC = 180 µg/ml and MBC = 270 µg/ml against P. aeruginosa. None of the antibacterial extracts showed lethal activity against brine shrimp nauplii. On the other hand, both aqueous and organic extracts obtained from the aerial organs of Vismia guianensis that were cytotoxic to brine shrimp nauplii did not show a significant antibacterial activity in the assay.
Resumo:
The sensitivity of two Gram positive (Staphylococcus aureus and Bacillus subtilis) and two Gram negative (Escherichia coli and Pseudomonas aeruginosa) pathogenic multi-drug resistant bacteria was tested against the crude extracts (cold aqueous, hot aqueous, and methanol extracts) of leaves and seeds of Argemone mexicana L. (Papaveraceae) by agar well diffusion method. Though all the extracts were found effective, yet the methanol extract showed maximum inhibition against the test microorganisms followed by hot aqueous extract and cold aqueous extract.
Resumo:
The antimicrobial activity of copaiba oils was tested against Gram-positive and Gram-negative bacteria, yeast, and dermatophytes. Oils obtained from Copaifera martii, Copaifera officinalis, and Copaifera reticulata (collected in the state of Acre) were active against Gram-positive species (Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Bacillus subtilis, and Enterococcus faecalis) with minimum inhibitory concentrations ranging from 31.3-62.5 µg/ml. The oils showed bactericidal activity, decreasing the viability of these Gram-positive bacteria within 3 h. Moderate activity was observed against dermatophyte fungi (Trichophyton rubrum and Microsporum canis). The oils showed no activity against Gram-negative bacteria and yeast. Scannning electron microscopy of S. aureus treated with resin oil from C. martii revealed lysis of the bacteria, causing cellular agglomerates. Transmission electron microscopy revealed disruption and damage to the cell wall, resulting in the release of cytoplasmic compounds, alterations in morphology, and a decrease in cell volume, indicating that copaiba oil may affect the cell wall.
Resumo:
Seven medicinal plant extracts traditionally used in Kenya, mainly for management of infectious conditions, were chosen and screened for their antibacterial activity against Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Bacillus cereus and Staphylococcus aureus) bacteria. Antibacterial activity was tested using the broth dilution method. Harrisonia abyssinica and Terminalia kilimandscharica extracts showed significant activity against Gram+ and Gram- bacteria. The methanolic extracts of T. kilimandscharica bark and H. abyssinica bark and leaves showed minimum inhibitory activity against all tested bacteria, with minimal inhibitory concentrations ranging from 25-150 mg/mL. Ajuga remota and Amaranthus hybridus, which are lethal to brine shrimp nauplii, showed significantly lower antibacterial activity than those that were relatively non-toxic.
Resumo:
The use of Gram type-specific PCR on buffy coat from clinical specimens for the detection of bacteraemia was evaluated for the first time using whole blood culture as the gold standard. In addition, the established buffy coat culture and whole blood PCR were also compared. Gram-positive bacteria belonging to six species and Gram-negative bacteria from 10 species were isolated and identified by culture and detected using broad-range 16S rDNA primers and Gram-specific primers. Data from the three methods all conferred very high sensitivity, specificity, positive and negative predictive values when compared to whole blood culture. The Kappa coefficients of agreement were 0.9819 (buffy coat PCR), 0.9458 (whole blood PCR) and 1.0 (buffy coat culture), which establishes their validity as alternative methods to routine blood culture in detecting bacteraemia. In addition, results showed that there was a direct correlation of WBC counts greater than 12,000 cells per mm³ to the occurrence of bacteraemia as detected by the four methods (p < 0.05).
Resumo:
Methicillin-resistant Staphylococcus remains a severe public health problem worldwide. This research was intended to identify the presence of methicillin-resistant coagulase-negative staphylococci clones and their staphylococcal cassette chromosome mec (SCCmec)-type isolate from patients with haematologic diseases presenting bacterial infections who were treated at the Blood Bank of the state of Amazonas in Brazil. Phenotypic and genotypic tests, such as SCCmec types and multilocus sequence typing (MLST), were developed to detect and characterise methicillin-resistant isolates. A total of 26 Gram-positive bacteria were isolated, such as: Staphylococcus epidermidis (8/27), Staphylococcus intermedius (4/27) and Staphylococcus aureus (4/27). Ten methicillin-resistant staphylococcal isolates were identified. MLST revealed three different sequence types: S. aureus ST243, S. epidermidis ST2 and a new clone of S. epidermidis, ST365. These findings reinforce the potential of dissemination presented by multi-resistant Staphylococcus and they suggest the introduction of monitoring actions to reduce the spread of pathogenic clonal lineages of S. aureus and S. epidermidis to avoid hospital infections and mortality risks.
Resumo:
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Resumo:
Bacillus thuringiensisis a ubiquitous Gram-positive and sporulating bacterium. Its crystals and secreted toxins are useful tools against larvae of diverse insect orders and, as a consequence, an alternative to recalcitrant chemical insecticides. We report here the draft genome sequence ofB. thuringiensis147, a strain isolated from Brazil and with high insecticidal activity. The assembled genome contained 6,167,994 bp and was distributed in seven replicons (a chromosome and 6 plasmids). We identified 12 coding regions, located in two plasmids, which encode insecticidal proteins.
Resumo:
The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerrado stricto sensu" and "campo sujo"), under different fire regimes, and a 20-year-old active palisadegrass pasture in the Central Plateau of Brazil. Microbial biomass was higher in the native plots than in the pasture, and the highest monthly values were observed during the rainy season in the native plots. No significant differences were observed between fire regimes or between communities from the two native vegetation types. However, the principal component (PC) analysis separated the microbial communities by vegetation cover (native x pasture) and season (wet x dry), accounting for 45.8% (PC1 and PC3) and 25.6% (PC2 and PC3), respectively, of the total PLFA variability. Changes in land cover and seasonal rainfall in Cerrado ecosystems have significant effects on the total density of soil microorganisms and on the abundance of microbial groups, especially Gram-negative and Gram-positive bacteria.
Resumo:
The objective of this work was to isolate strains of lactic acid bacteria with probiotic potential from the digestive tract of marine shrimp (Litopenaeus vannamei), and to carry out in vitro selection based on multiple characters. The ideotype (ideal proposed strain) was defined by the highest averages for the traits maximum growth velocity, final count of viable cells, and inhibition halo against nine freshwater and marine pathogens, and by the lowest averages for the traits duplication time and resistance of strains to NaCl (1.5 and 3%), pH (6, 8, and 9), and biliary salts (5%). Mahalanobis distance (D²) was estimated among the evaluated strains, and the best ones were those with the shortest distances to the ideotype. Ten bacterial strains were isolated and biochemically identified as Lactobacillus plantarum (3), L. brevis (3), Weissella confusa (2), Lactococcus lactis (1), and L. delbrueckii (1). Lactobacillus plantarum strains showed a wide spectrum of action and the largest inhibition halos against pathogens, both Gram-positive and negative, high growth rate, and tolerance to all evaluated parameters. In relation to ideotype, L. plantarum showed the lowest Mahalanobis (D²) distance, followed by the strains of W. confusa, L. brevis, L. lactis, and L. delbrueckii. Among the analyzed bacterial strains, those of Lactobacillus plantarum have the greatest potential for use as a probiotic for marine shrimp.
Resumo:
This article provides an overview on the recent achievements to combat Gram-positive bacteria and the mechanisms related to antimicrobial activity and bacterial resistance. Selected synthetic methodologies to access structurally diverse bioactive compounds are presented in order to emphasize the most important substances currently developed to overcome multiresistant strains. The main properties of vancomycin and related glycopeptide antibiotics are also discussed as a background to understanding the design of new chemotherapeutic agents.