132 resultados para Goat producers
Resumo:
The objective this study was to determine the effect of phytohemagglutinin (PHA) on survival, growth and gene expression in caprine secondary follicles culturedin vitro. Secondary follicles (∼0.2 mm) were isolated from the cortex of caprine ovaries and cultured individually for 6 days in α-MEM+ supplemented with PHA (0, 1, 10, 50, 100, or 200 µg/mL). After 6 days of culture, follicle diameter and survival, antrum formation, ultrastructure and expression of mRNA for FSH receptors (FSH-R), proliferating cell nuclear antigen (PCNA), and neuronal nitric oxide synthase were determined. All treatments maintained follicular survival [α-MEM+ (94.59%); 1 µg/mL PHA (96.43%); 10 µg/mL PHA (84.85%); 50 µg/mL PHA (85.29%); 100 µg/mL PHA (88.57%), and 200 µg/mL PHA (87.50)], but the presence of 10 µg/mL PHA in the culture medium increased the antrum formation rate (21.21%) when compared with control (5.41%, P < 0.05) and ensured the maintenance of oocyte and granulosa cell ultrastructures after 6 days of culture. The expression of mRNA for FSH-R (2.7 ± 0.1) and PCNA (4.4 ± 0.2) was also significantly increased in follicles cultured with 10 µg/mL PHA in relation to those cultured in α-MEM+ (1.0 ± 0.1). In conclusion, supplementation of culture medium with 10 µg/mL PHA maintains the follicular viability and ultrastructure, and promotes the formation of antral cavity after 6 days of culture in vitro.
Resumo:
Bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) have been shown to exhibit a synergistic effect to promote bone repair and healing. In this study, we constructed a novel adenovirus with high coexpression of BMP2 and bFGF and evaluated its effect on osteogenic differentiation of goat bone marrow progenitor cells (BMPCs). Recombinant adenovirus Ad-BMP2-bFGF was constructed by using the T2A sequence. BMPCs were isolated from goats by density gradient centrifugation and adherent cell culture, and were then infected with Ad-BMP2-bFGF or Ad-BMP2. Expression of BMP2 and bFGF was detected by ELISA, and alkaline phosphatase (ALP) activity was detected by an ALP assay kit. In addition, von Kossa staining and immunocytochemical staining of collagen II were performed on BMPCs 21 days after infection. There was a high coexpression of BMP2 and bFGF in BMPCs infected with Ad-BMP2-bFGF. Twenty-one days after infection, ALP activity was significantly higher in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. Larger and more mineralized calcium nodules, as well as stronger collagen II staining, were observed in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. In summary, we developed a novel adenovirus vector Ad-BMP2-bFGF for simultaneous high coexpression of BMP2 and bFGF, which could induce BMPCs to differentiate efficiently into osteoblasts.
Resumo:
Seventy-eight kids of both sexes and five genotypes were used: Alpine, ½ Boer + ½ Alpine (½ BA), ¾ Boer + ¼ Alpine, ½ Anglo-nubian + ½ Alpine and "tricross" (½ Anglo-nubian + ¼ Boer + ¼ Alpine) with initial average weight of 14.1 ± 2.5. The objective was to evaluate the effect of genotype, finishing system, and sex on the physiochemical characteristics of goat meat. Finishing systems were: ST1 - kid + dam in pasture and ST2 - weaned kid and feedlot. Kids in ST1 were kept in an area with Panicum maximum cv. Tanzania, and after grazing, water and mineral salt/mix were fed ad libitum to the animals. The animals in ST2 were confined in collective pens distributed according to genotypes and received diet with 16% CP and 73% TDN. The values of pH, a* (red content), Cooking Loss (CL), and Ether Extract (EE) percentage were influenced by genotype. Values for red content (a*) and L* (brightness), CL and percentages of moisture, protein, EE, and ash were influenced by the finishing system. Longissimus dorsi muscle from animals ½ BA exhibited better physiochemical characteristics. For greater tenderness and higher percentages of fat, consumers should choose female kid goat meat.
Resumo:
The rheological behavior and density of goat milk was studied as a function of solids concentration (10.5 to 50.0%) and temperature (273 to 331 k). Newtonian behavior was observed for values of total solids (TS) between 10.5 and 22.0% and temperatures from 276 to 331 k changing to pseudoplastic behavior without yield stress for TS from 25.0 to 39.4% at the same range of temperature. Goat milk with TS between 44.3 to 50.0% and temperatures of 273 to 296 k showed yield stress in addition to pseudoplastic behavior. At 303 to 331 k the power law model was observed again, without yield stress. The density of goat milk ranged from 991.7 to 1232.4 kg.m-3.
Resumo:
The aim of this study was to compare the rheology of spreadable cheeses elaborated with autochthonous lactic starter cultures without the addition of exopolysaccharide-producing strain in the same starter with exopolysaccharide-producing strain. From a rheological standpoint, both samples were characterized as weak viscoelastic gels and pseudoplastic products. It was concluded that cheese made with exopolysaccharide-producing strain showed smaller G', G", and η* values over the range of frequencies studied and smaller critic stress values than the cheese without exopolysaccharide-producing strain. The results obtained indicate that cheeses without exopolysaccharide-producing strain need to be added with any texture enhancer product.
Resumo:
This study aimed to identify antioxidant peptides from caprine casein hydrolysates by papain application using MALDI-TOF mass spectrometer, and a 2² full factorial design, with 4 axial points, in order to evaluate kinetic parameters (time and pH) effects on the degree of hydrolysis as well as the antioxidant activity of Moxotó goat milk casein peptides. Degree of hydrolysis was determined by total and soluble protein ratio in casein. Antioxidant activity was measured by ABTS method with 2, 2-cation-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). TROLOX was used as standard. Peptide pattern and sequence of antioxidant amino acids were obtained using MALDI-TOF/MS. The highest degree of hydrolysis (28.5%) and antioxidant activity (2329.6 mmol.L TROLOX. mg- 1 peptide) were observed in the permeate. NENLL, NPWDQVK and LLYQEPVLGPV peptides, detected in the permeate, were pointed as the responsible for antioxidant activity, suggesting their potential application as food supplement and pharmaceutical products.
Resumo:
Combining prebiotics and probiotic microorganisms improve quality in the formulation of foods. In this paper, the characteristics of goat milk and symbiotic yogurt were studied. Raw goat milk was analyzed and the skimming process was optimized. For the formulation of a potentially non-fat symbiotic yogurt made with skimmed goat milk, inulin, gelatin, sugar, and Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei subsp. rhamnoshus. Chemical characteristics, acceptability, and viability of lactic acid bacteria and probiotic culture were assessed. The protein and fat content of the raw milk was 2.90 and 3.56 g/100 mL, respectively. The optimum skimming process was obtained at 9,800 rpm and 4 °C for 15 minutes. The product formulated had a protein and fat content of 4.04 to 0.04 g/100 mL, good sensory properties, and acceptability of 95%. The lactic bacteria count was 9 × 10(7) CFU mL- 1, and probiotic culture count was higher than 1 × 10(6) CFU mL- 1, which guarantees their effect and capacity to survive in the digestive tract and spread in the intestine. The yogurt was stable during the 21 days of storage. Therefore, this study shows that goat milk yogurt is an adequate delivery vehicle of the probiotic culture L. casei and inulin.
Resumo:
The goat placental immunomodulatory peptides were produced by fermentation with Aspergillus Niger. The objective of the present study was to investigate the effects of fermentation parameters (carbon source content, pH, and time) on spleen lymphocyte proliferation for the highest immune activity of the fermentation broth using response surface methodology (RSM). According to the data analysis by the Design-Expert® software, the stimulation index value (23.51%), which is the maximum immune activity, was obtained under the following conditions: content of carbon source 1.97 g·L-1, initial pH 5.0, and 74.43 h of fermentation time. Under the optimized fermentation conditions, at a certain concentration range, the fermentation broth produced a significant effect on the proliferation of mouse spleen lymphocytes. Ultrafiltration technique was performed to separate the fermentation broth with different MW (molecular weight). It was found that peptides in the range of <10 KDa were the main bioactivity fractions for the immunomodulatory and antioxidant activities.
Resumo:
Animal and human rabies samples isolated between 1989 and 2000 were typified by means of a monoclonal antibody panel against the viral nucleoprotein. The panel had been previously established to study the molecular epidemiology of rabies virus in the Americas. Samples were isolated in the Diagnostic Laboratory of the Pasteur Institute and in other rabies diagnostic centers in Brazil. In addition to the fixed virus samples CVS-31/96-IP, preserved in mouse brain, and PV-BHK/97, preserved in cell culture, a total of 330 rabies virus samples were isolated from dogs, cats, cattle, horses, bats, sheep, goat, swine, foxes, marmosets, coati and humans. Six antigenic variants that were compatible with the pre-established monoclonal antibodies panel were defined: numbers 2 (dog), 3 (Desmodus rotundus), 4 (Tadarida brasiliensis), 5 (vampire bat from Venezuela), 6 (Lasiurus cinereus) and Lab (reacted to all used antibodies). Six unknown profiles, not compatible with the panel, were also found. Samples isolated from insectivore bats showed the greatest variability and the most commonly isolated variant was variant-3 (Desmodus rotundus). These findings may be related to the existence of multiple independent transmission cycles, involving different bat species.
Resumo:
Extended-spectrum β-lactamases (ESBL) in enterobacteria are recognized worldwide as a great hospital problem. In this study, 127 ESBL-producing Enterobacteriaceae isolated in one year from inpatients and outpatients at a public teaching hospital at São Paulo, Brazil, were submitted to analysis by PCR with specific primers for blaSHV, blaTEM and blaCTX-M genes. From the 127 isolates, 96 (75.6%) Klebsiella pneumoniae, 12 (9.3%) Escherichia coli, 8 (6.2%) Morganella morganii, 3 (2.3%) Proteus mirabilis, 2 (1.6%) Klebsiella oxytoca, 2 (1.6%) Providencia rettgeri, 2 (1.6%) Providencia stuartti, 1 (0.8%) Enterobacter aerogenes and 1 (0.8%) Enterobacter cloacae were identified as ESBL producers. BlaSHV, blaTEM and blaCTX-M were detected in 63%, 17.3% and 33.9% strains, respectively. Pulsed field gel eletrophoresis genotyping of K. pneumoniae revealed four main molecular patterns and 29 unrelated profiles. PCR results showed a high variety of ESBL groups among strains, in nine different species. The results suggest the spread of resistance genes among genetically different strains of ESBL-producing K. pneumoniae in some hospital wards, and also that some strongly related strains were identified in different hospital wards, suggesting clonal spread in the institutional environment.
Resumo:
A case-control study, involving patients with positive blood cultures for Klebsiella pneumoniae (KP) or Escherichia coli (EC) EC and controls with positive blood cultures for non-ESBL-KP or EC, was performed to assess risk factors for extended-spectrum-β-lactamase (ESBL) production from nosocomial bloodstream infections (BSIs). Mortality among patients with BSIs was also assessed. The study included 145 patients (81, 59.5% with K. pneumoniae and 64, 44.1% with E. coli BSI); 51 (35.2%) isolates were ESBL producers and 94 (64.8%) nonproducers. Forty-five (55.6%) K. pneumoniae isolates were ESBL producers, while only six (9.4%) E. coli isolates produced the enzyme. Multivariate analysis showed that recent exposure to piperacillin-tazobactam (adjusted Odds Ratio [aOR] 6.2; 95%CI 1.1-34.7) was a risk factor for ESBL BSI. K. pneumoniae was significantly more likely to be an ESBL-producing isolate than E. coli (aOR 6.7; 95%CI 2.3-20.2). No cephalosporin class was independently associated with ESBLs BSI; however, in a secondary model considering all oxymino-cephalosporins as a single variable, a significant association was demonstrated (aOR 3.7; 95%CI 1.3-10.8). Overall 60-day mortality was significantly higher among ESBL-producing organisms. The finding that piperacillin-tazobactam use is a risk factor for ESBL-production in KP or EC BSIs requires attention, since this drug can be recommended to limit the use of third-generation cephalosporins.
Resumo:
BACKGROUND: The Ethiopian mountain adder (Bitis parviocula) is a viperid known only from a few locations in southwestern Ethiopia. METHODS: a total of 30 µg of B. arietans and B. parviocula venoms were run on a 10-20% Tricine gel. To assay lethality dose fifty (LD50), five groups of eight mice for each venom were used. Hemorrhagic activity for crude venom was tested. Fibrinogenolytic activity of crude venom was measured using (2.5 mg/mL) of fibrinogen solution and (0.03 mg/mL) of crude venom. Gelatinase activity of the venom was tested on a Kodak X-OMAT TM film. Crude venoms of B. parviocula and B. arietans were tested for their abilities to affect clotting time, clotting rate and platelet function on whole human blood. RESULTS: The (SAIMR) antivenom was confirmed in this study to neutralize the lethal activity of venom from Bitis parviocula. The ED50s of SAIMR antivenom on B. parviocula and B. arietans neutralized half of 18.2 and 66.7 mg of venom, respectively. The hemorrhagic activities (MHDs) of B. parviocula and B. arietans were 0.88 and 1.7 µg, respectively. Bitis arietans and B. parviocula venoms degradated α and β chains at different times. The γ chains remained unaffected. Bitis parviocula venom did not exhibit gelatinase activity, while B. arietans had a MGD of 6.9 µg. At 3 mg/mL, the crude venoms of B. parviocula and B. arietans did not significantly affect clotting time or clotting rate. CONCLUSIONS: The SAIMR antivenom is very effective in neutralizing the venom of B. parviocula and should be considered in treating envenomations by these snakes.
Resumo:
A variety of foods and environmental sources harbor bacteria that are resistant to one or more antimicrobial drugs used in medicine and agriculture. Antibiotic resistance in Escherichia coli is of particular concern because it is the most common Gram-negative pathogen in humans. Hence this study was conducted to determine the antibiotic sensitivity pattern of E. coli isolated from different types of food items collected randomly from twelve localities of Hyderabad, India. A total of 150 samples comprising; vegetable salad, raw egg-surface, raw chicken, unpasteurized milk, and raw meat were processed microbiologically to isolate E. coli and to study their antibiotic susceptibility pattern by the Kirby-Bauer method. The highest percentages of drug resistance in isolates of E. coli were detected from raw chicken (23.3%) followed by vegetable salad (20%), raw meat (13.3%), raw egg-surface (10%) and unpasteurized milk (6.7%). The overall incidence of drug resistant E. coli was 14.7%. A total of six (4%) Extended Spectrum β-Lactamase (ESBL) producers were detected, two each from vegetable salads and raw chicken, and one each from raw egg-surface and raw meat. Multidrug resistant strains of E. coli are a matter of concern as resistance genes are easily transferable to other strains. Pathogen cycling through food is very common and might pose a potential health risk to the consumer. Therefore, in order to avoid this, good hygienic practices are necessary in the abattoirs to prevent contamination of cattle and poultry products with intestinal content as well as forbidding the use of untreated sewage in irrigating vegetables.
Resumo:
The evaluation of workers as potential reservoirs and disseminators of pathogenic bacteria has been described as a strategy for the prevention and control of healthcare-associated infections (HAIs). The aim of this study was to evaluate the presence of Enterobacteriaceae in the oral cavity of workers at an oncology hospital in the Midwest region of Brazil, as well as to characterize the phenotypic profile of the isolates. Saliva samples of 294 workers from the hospital’s healthcare and support teams were collected. Microbiological procedures were performed according to standard techniques. Among the participants, 55 (18.7%) were colonized by Enterobacteriaceae in the oral cavity. A total of 64 bacteria were isolated, including potentially pathogenic species. The most prevalent species was Enterobacter gergoviae (17.2%). The highest rates of resistance were observed for β-lactams, and 48.4% of the isolates were considered multiresistant. Regarding the enterobacteria isolated, the production of ESBL and KPC was negative. Nevertheless, among the 43 isolates of the CESP group, 51.2% were considered AmpC β-lactamase producers by induction, and 48.8% were hyper-producing mutants. The significant prevalence of carriers of Enterobacteriaceae and the phenotypic profile of the isolates represents a concern, especially due to the multiresistance and production of AmpC β-lactamases.
Resumo:
This cross-sectional study, performed in an oncology hospital in Goiania, aimed to characterize the prevalence of oral colonization and antimicrobial susceptibility of Pseudomonas spp. isolated from the saliva of healthcare workers. Microorganisms were subjected to biochemical tests, susceptibility profile, and phenotypic detection. Of 76 participants colonized with Gram negative bacilli, 12 (15.8%) harbored Pseudomonas spp. Of all isolates, P. aeruginosa (75.0%), P. stutzeri (16.7%), and P. fluorescens (8.3%), were resistant to cefoxitin, and therefore likely to be AmpC producers. The results are clinically relevant and emphasize the importance of surveillance to minimize bacterial dissemination and multiresistance.