62 resultados para Glucose-transporter Isoforms
Resumo:
Leishmania (V.) braziliensis M2903 presents a small linear and stable 245 kb chromosome originating from a genomic amplification. Similar amplifications present in other species of Leishmania contain a gene coding for a biopterin transporter. Since Leishmania is auxotrophic for this metabolite, this amplification could result from the need to better capture biotpterin from growth media under specific circumstances. In this paper we show that this gene is also present in L. (V.) braziliensis small chromosome, which shares sequences with other genomic amplifications already described.
Resumo:
Schistosoma mansoni ATP diphosphohydrolase isoforms and potato apyrase share conserved epitopes. By enzyme-linked immunosorbent assays, elevated levels of IgM, IgG2a and IgG1 antibody reactivity against potato apyrase were observed in S. mansoni-infected BALB/c mice during the acute phase of infection, while only IgM and IgG1 antibody reactivity levels maintained elevated during the chronic phase of infection. Antibody reactivity against potato apyrase was monitored over an 11-month period in chronically-infected mice treated with oxamniquine. Eleven months later, the level of seropositive IgM decreased significantly (~30%) compared to the level found in untreated, infected mice. The level of seropositive IgG1 decreased significantly four months after treatment (MAT) (61%) and remained at this level even after 11 months. The IgG2a reactivity against potato apyrase, although unchanged during chronic phase to 11 MAT, appeared elevated again in re-infected mice suggesting a response similar to that found during the acute phase. BALB/c mouse polyclonal anti-potato apyrase IgG reacted with soluble egg antigens probably due to the recognition of parasite ATP diphosphohydrolase. This study, for the first time, showed that the IgG2a antibody from S. mansoni-infected BALB mice cross-reacts with potato apyrase and the level of IgG2a in infected mice differentiates disease phases. The results also suggest that different conserved-epitopes contribute to the immune response in schistosomiasis.
Resumo:
Benznidazole (BZ) is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzistrains. ATP-binding cassette (ABC) transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison ofTcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1genes of BZ-susceptible and resistant strains were investigated by computational tools.
Resumo:
Organic matter dynamics and nutrient availability in saline agricultural soils of the State of Guanajuato might provide information for remediation strategies. 14C labeled glucose with or without 200 mg kg-1 of NH4+-N soil was added to two clayey agricultural soils with different electrolytic conductivity (EC), i.e. 0.94 dS m-1 (low EC; LEC) and 6.72 dS m-1 (high EC; HEC), to investigate the effect of N availability and salt content on organic material decomposition. Inorganic N dynamics and production of CO2 and 14CO2 were monitored. Approximately 60 % of the glucose-14C added to LEC soil evolved as 14CO2, but only 20 % in HEC soil after the incubation period of 21 days. After one day, < 200 mg 14C was extractable from LEC soil, but > 500 mg 14C from HEC soil. No N mineralization occurred in the LEC and HEC soils and glucose addition reduced the concentrations of inorganic N in unamended soil and soil amended with NH4+-N. The NO2- and NO3- concentrations were on average higher in LEC than in HEC soil, with exception of NO2- in HEC amended with NH4+-N. It was concluded that increases in soil EC reduced mineralization of the easily decomposable C substrate and resulted in N-depleted soil.
Resumo:
In this work, we provide an investigation of the role and strength of affinity interactions on the partitioning of the glucose-6-phosphate dehydrogenase in aqueous two-phase micellar systems. These systems are constituted of micellar surfactant solutions and offer both hydrophobic and hydrophilic environments, providing selectivity to biomolecules. We studied G6PD partitioning in systems composed of the nonionic surfactants, separately, in the presence and absence of affinity ligands. We observed that G6PD partitions to the micelle-poor phase, owing to the strength of excluded-volume interactions in these systems that drive the protein to the micelle-poor phase, where there is more free volume available.
Resumo:
MeOH extract from the leaves of Plectranthus barbatus Andrews (Lamiaceae), showed in vitro anti-trypanosomal activity. The bioassay-guided fractionation resulted in the isolation of a gallic acid derivative, identified as 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), after thorough NMR and MS spectral analysis. Finally, this compound was tested against trypomastigote forms of T. cruzi and displayed an EC50 value of 67 µM, at least 6.6-fold more effective than the standard drug benznidazole. This is the first occurrence of PGG in the Plectranthus genus and the first anti-parasitic activity described for PGG in the literature.
Resumo:
Bioorganic and biological chemistry have been found to be highly motivating to undergraduate students and in this context, biochemical blood parameter analysis emerges as highly attractive content. In this proposal, several aspects related to analyses of glucose, cholesterol and triglycerides using the enzymatic colorimetric method were involved, and the findings have at least two relevant implications: i) introducing students to connections between organic chemistry and biology based on enzymatic processes, including reactivity and mechanistic aspects; ii) performing a micro scale bioassay analysis. The proposal requires two theoretical classes (2 h per class) and one practical class (4 h).
Resumo:
Molecular modelling using semiempirical methods AM1, PM3, PM5 and, MINDO as well as the Density Functional Theory method BLYP/DZVP respectively were used to calculate the structure and vibrational spectra of d-glucose and d-fructose in their open chain, alpha-anomer and beta-anomer monohydrate forms. The calculated data show that both molecules are not linear; ground state and the number for the point-group C is equal to 1. Generally, the results indicate that there are similarities in bond lengths and vibrational modes of both molecules. It is concluded that DFT could be used to study both the structural and vibrational spectra of glucose and fructose.
Resumo:
Cotyledonary b-galactosidases were isolated and partially purified from Pitiúba cowpea (Vigna unguiculata (L.) Walp.) quiescent seeds. The purification steps consisted of precipitation of the crude extract with ammonium sulphate in the range of 20-60% saturation, acid precipitation, DEAE-Sephadex ion-exchange chromatography and Lactosyl-Sepharose affinity chromatography. This purification process gave rise to three b-galactosidases-rich fractions: b-gal I, b-gal II and b-gal III, which were purified about 5, 509, and 62 fold, respectively. They reached maximal enzyme activity at different pH ranges: 3.5-4.5 for b-gal I, 3.0-3.5 for b-gal II, and 3.0-4.0 for b-gal III. Their maximal activities were reached when the temperature of the assay medium was 60° C, and preincubation of the enzymes at different temperatures has shown that they were heat-stable up to 50° C. There were no significant differences among the partially purified enzymes as far as their response to the different effectors tested, except for Mn2+ and EDTA, which affected differently b-gal I, b-gal II, and b-gal III. They were slightly affected by Mg2+, Ca2+, Zn2+, Co2+, tartarate, molybdate, glucose, and lactose, strongly inhibited by Cu2+ and galactose, and inactivated by Hg2+. These chemical and physical properties are similar to the ones found for other plant b-galactosidases. Although through this process of purification three isoforms of this enzyme were obtained, isoelectric focusing in polyacrylamide slab gel of these enzyme-proteins suggest that cotyledons of Pitiúba cowpea quiescent seeds possess four isoforms of b-galactosidases.
Resumo:
The aim of the present study was to evaluate the effect of first morning urinary volume (collected on three different non-consecutive days), fasting blood glucose (determined on the first and third days of urine collection), and glycosylated hemoglobin (determined on the first and third days of urine collection) on the albumin concentration in first morning urine samples collected on three different days. We found 3.6% asymptomatic bacteriuria in the urine samples; therefore, every urine sample must be tested to exclude infection. One hundred and fifty urine samples were provided by 50 IDDM patients aged 21.9 ± 7 (12-38) years with a disease duration of 6.8 ± 5.8 (0.4-31) years attending the Diabetes Clinic at the State University Hospital of Rio de Janeiro. There were no differences in albumin concentration (6.1 vs 5.8 vs 6.2 µg/ml; P = NS) or urinary volume (222.5 vs 210 vs 200 ml) between the three samples. In addition, there were no differences in fasting blood glucose (181.9 ± 93.6 vs 194.6 ± 104.7 mg%; P = NS) or glycosylated hemoglobin (HbA1)(8.4 ± 1.3 vs 8.8 ± 1.5%; P = NS) between the first and third blood samples. Six patients (group 1) had a mean urinary albumin concentration of more than 20 µg/ml for the three urine samples. This group was compared with the 44 patients (group 2) with a mean urinary albumin concentration for the three urine samples of less than 20 µg/ml. No difference was found between groups 1 and 2 in relation to fasting blood glucose (207.1 ± 71.7 vs 187.6 ± 84.6 mg/dl), HbA1 (8.1 ± 0.9 vs 8.6 ± 1.1%) or urinary volume [202 (48.3-435) vs 246 (77.3-683.3) ml]. Stepwise multiple regression analysis with albumin concentration of first morning urine samples as the dependent variable, and urinary volume, fasting blood glucose and glycosylated hemoglobin as independent variables, showed that only 12% (P = 0.01) of the albumin concentration could be accounted for by the independent effect of morning urine volume on the first day of urine collection. No urine samples showed a change in the cutoff level of 20 µg/ml of albumin concentration as the result of volume. Fasting blood glucose and glycosylated hemoglobin did not influence the urinary albumin concentration. Considerable variability in urinary albumin concentration was found in the three morning urine samples with a mean intraindividual coefficient variation of 56%. In conclusion, in the present study, urinary volume had a minimal, though not constant, effect on first morning urinary albumin concentration. Day-to-day metabolic and clinical control of IDDM patients, except probably for ketoacidosis, should not contraindicate microalbuminuria screening in first morning urine samples
Resumo:
Different levels of insulin sensitivity have been described in several animal models of obesity as well as in humans. Monosodium glutamate (MSG)-obese mice were considered not to be insulin resistant from data obtained in oral glucose tolerance tests. To reevaluate insulin resistance by the intravenous glucose tolerance test (IVGTT) and by the clamp technique, newborn male Wistar rats (N = 20) were injected 5 times, every other day, with 4 g/kg MSG (N = 10) or saline (control; N = 10) during the first 10 days of age. At 3 months, the IVGTT was performed by injecting glucose (0.75 g/kg) through the jugular vein into freely moving rats. During euglycemic clamping plasma insulin levels were increased by infusing 3 mU . kg-1 . min-1 of regular insulin until a steady-state plateau was achieved. The basal blood glucose concentration did not differ between the two experimental groups. After the glucose load, increased values of glycemia (P<0.001) in MSG-obese rats occurred at minute 4 and from minute 16 to minute 32. These results indicate impaired glucose tolerance. Basal plasma insulin levels were 39.9 ± 4 µU/ml in control and 66.4 ± 5.3 µU/ml in MSG-obese rats. The mean post-glucose area increase of insulin was 111% higher in MSG-obese than in control rats. When insulinemia was clamped at 102 or 133 µU/ml in control and MSG rats, respectively, the corresponding glucose infusion rate necessary to maintain euglycemia was 17.3 ± 0.8 mg . kg-1 . min-1 for control rats while 2.1 ± 0.3 mg . kg-1 . min-1 was sufficient for MSG-obese rats. The 2-h integrated area for total glucose metabolized, in mg . min . dl-1, was 13.7 ± 2.3 vs 3.3 ± 0.5 for control and MSG rats, respectively. These data demonstrate that MSG-obese rats develop insulin resistance to peripheral glucose uptake
Resumo:
We studied the development of the insulin secretion mechanism in the pancreas of fetal (19- and 21-day-old), neonatal (3-day-old), and adult (90-day-old) rats in response to stimulation with 8.3 or 16.7 mM glucose, 30 mM K+, 5 mM theophylline (Theo) and 200 µM carbamylcholine (Cch). No effect of glucose or high K+ was observed on the pancreas from 19-day-old fetuses, whereas Theo and Cch significantly increased insulin secretion at this age (82 and 127% above basal levels, respectively). High K+ also failed to alter the insulin secretion in the pancreas from 21-day-old fetuses, whereas 8.3 mM and 16.7 mM glucose significantly stimulated insulin release by 41 and 54% above basal levels, respectively. Similar results were obtained with Theo and Cch. A more marked effect of glucose on insulin secretion was observed in the pancreas of 3-day-old rats, reaching 84 and 179% above basal levels with 8.3 mM and 16.7 mM glucose, respectively. At this age, both Theo and Cch increased insulin secretion to close to two-times basal levels. In islets from adult rats, 8.3 mM and 16.7 mM glucose, Theo, and Cch increased the insulin release by 104, 193, 318 and 396% above basal levels, respectively. These data indicate that pancreatic B-cells from 19-day-old fetuses were already sensitive to stimuli that use either cAMP or IP3 and DAG as second messengers, but insensitive to stimuli such as glucose and high K+ that induce membrane depolarization. The greater effect of glucose on insulin secretion during the neonatal period indicates that this period is crucial for the maturation of the glucose-sensing mechanism in B-cells.
Resumo:
In tumor-bearing rats, most of the serum amino acids are used for synthesis and oxidation processes by the neoplastic tissue. In the present study, the effect of Walker 256 carcinoma growth on the intestinal absorption of leucine, methionine and glucose was investigated in newly weaned and mature rats. Food intake and carcass weight were decreased in newly weaned (NT) and mature (MT) rats bearing Walker 256 tumor in comparison with control animals (NC and MC). The tumor/carcass weight ratio was higher in NT than in MT rats, whereas nitrogen balance was significantly decreased in both as compared to control animals. Glucose absorption was significantly reduced in MT rats (MT = 47.3 ± 4.9 vs MC = 99.8 ± 5.3 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05) but this fact did not hamper the evolution of cancer. There was a significant increase in methionine absorption in both groups (NT = 4.2 ± 0.3 and MT = 2.0 ± 0.1 vs NC = 3.7 ± 0.1 and MC = 1.2 ± 0.2 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), whereas leucine absorption was increased only in young tumor-bearing rats (NT = 8.6 ± 0.2 vs NC = 7.7 ± 0.4 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), suggesting that these metabolites are being used for synthesis and oxidation processes by the neoplastic cells, which might ensure their rapid proliferation especially in NT rats.
Resumo:
Glucose-6-phosphate dehydrogenase (G6PD) activity and the affinity for its substrate glucose-6-phosphate were investigated under conditions similar to the physiological environment in terms of ionic strength (I: 0.188), cation concentration, pH 7.34, and temperature (37oC). A 12.4, 10.4 and 21.4% decrease was observed in G6PD B, G6PD A+ and G6PD A- activities, respectively. A Km increase of 95.1, 94.4 and 95.4% was observed in G6PD B, G6PD A+ and G6PD A-, respectively, leading to a marked decrease in affinity. In conclusion, the observation of the reduced activity and affinity for its natural substrate reflects the actual pentose pathway rate. It also suggests a much lower NADPH generation, which is crucial mostly in G6PD-deficient individuals, whose NADPH availability is poor.
Resumo:
In order to identify early abnormalities in non-insulin-dependent diabetes mellitus (NIDDM) we determined insulin (using an assay that does not cross-react with proinsulin) and proinsulin concentrations. The proinsulin/insulin ratio was used as an indicator of abnormal ß-cell function. The ratio of the first 30-min increase in insulin to glucose concentrations following the oral glucose tolerance test (OGTT; I30-0/G30-0) was taken as an indicator of insulin secretion. Insulin resistance (R) was evaluated by the homeostasis model assessment (HOMA) method. True insulin and proinsulin were measured during a 75-g OGTT in 35 individuals: 20 with normal glucose tolerance (NGT) and without diabetes among their first-degree relatives (FDR) served as controls, and 15 with NGT who were FDR of patients with NIDDM. The FDR group presented higher insulin (414 pmol/l vs 195 pmol/l; P = 0.04) and proinsulin levels (19.6 pmol/l vs 12.3 pmol/l; P = 0.03) post-glucose load than the control group. When these groups were stratified according to BMI, the obese FDR (N = 8) showed higher fasting and post-glucose insulin levels than the obese NGT (N = 9) (fasting: 64.8 pmol/l vs 7.8 pmol/l; P = 0.04, and 60 min post-glucose: 480.6 pmol/l vs 192 pmol/l; P = 0.01). Also, values for HOMA (R) were higher in the obese FDR compared to obese NGT (2.53 vs 0.30; P = 0.075). These results show that FDR of NIDDM patients have true hyperinsulinemia (which is not a consequence of cross-reactivity with proinsulin) and hyperproinsulinemia and no dysfunction of a qualitative nature in ß-cells.