33 resultados para Generalised Linear Models
Resumo:
The control and regrowth after nicosulfuron reduced rate treatment of Johnsongrass (Sorghum halepense L. Pers.) populations, from seven Argentinean locations, were evaluated in pot experiments to assess if differential performance could limit the design and implementation of integrated weed management programs. Populations from humid regions registered a higher sensibility to reduced rates of nicosulfuron than populations from subhumid regions. This effect was visualised in the values of regression coefficient of the non-linear models (relating fresh weight to nicosulfuron rate), and in the time needed to obtain a 50% reduction of photosynthesis rate and stomatal conductance. The least leaf CO2 exchange of subhumid populations could result in a lower foliar absorption and translocation of nicosulfuron, thus producing less control and increasing their ability to sprout and produce new aerial biomass. The three populations from subhumid regions, with less sensibility to nicosulfuron rates, presented substantial difference in fresh weight, total rhizome length and number of rhizome nodes, when they were evaluated 20 week after treatment. In consequence, a substantial Johnsongrass re-infestation could occur, if rates below one-half of nicosulfuron labeled rate were used to control Johnsongrass in subhumid regions.
Resumo:
The objective of this work was to assess the genetic diversity and population structure of wheat genotypes, to detect significant and stable genetic associations, as well as to evaluate the efficiency of statistical models to identify chromosome regions responsible for the expression of spike-related traits. Eight important spike characteristics were measured during five growing seasons in Serbia. A set of 30 microsatellite markers positioned near important agronomic loci was used to evaluate genetic diversity, resulting in a total of 349 alleles. The marker-trait associations were analyzed using the general linear and mixed linear models. The results obtained for number of allelic variants per locus (11.5), average polymorphic information content value (0.68), and average gene diversity (0.722) showed that the exceptional level of polymorphism in the genotypes is the main requirement for association studies. The population structure estimated by model-based clustering distributed the genotypes into six subpopulations according to log probability of data. Significant and stable associations were detected on chromosomes 1B, 2A, 2B, 2D, and 6D, which explained from 4.7 to 40.7% of total phenotypic variations. The general linear model identified a significantly larger number of marker-trait associations (192) than the mixed linear model (76). The mixed linear model identified nine markers associated to six traits.
Resumo:
Response Surface Methodology (RSM) was applied to evaluate the chromatic features and sensory acceptance of emulsions that combine Soy Protein (SP) and red Guava Juice (GJ). The parameters analyzed were: instrumental color based on the coordinates a* (redness), b* (yellowness), L* (lightness), C* (chromaticity), h* (hue angle), visual color, acceptance, and appearance. The analyses of the results showed that GJ was responsible for the high measured values of red color, hue angle, chromaticity, acceptance, and visual color, whereas SP was the variable that increased the yellowness intensity of the assays. The redness (R²adj = 74.86%, p < 0.01) and hue angle (R²adj = 80.96%, p < 0.01) were related to the independent variables by linear models, while the sensory data (color and acceptance) could not be modeled due to a high variability. The models of yellowness, lightness, and chromaticity did not present lack of fit but presented adjusted determination coefficients bellow 70%. Notwithstanding, the linear correlations between sensory and instrumental data were not significant (p > 0.05) and low Pearson coefficients were obtained. The results showed that RSM is a useful tool to develop soy-based emulsions and model some chromatic features of guava-based emulsions through RSM.
Resumo:
The industrialization of passion fruit in the form of juice produces considerable amounts of residue that could be used as food. The objective of the present study was to determine the effects of the volume of passion fruit juice added to the syrup and the cooking time on the color and texture of passion fruit albedo preserved in syrup. Multi-linear models were well fit to describe the value for a* (for the albedo) the values for b* (for the albedo and syrup), which exhibited high correlation coefficients of 98%, 84%, and 88%, respectively. The volume of passion fruit juice added and the cooking time of the albedos in the syrup, involved in the processing of passion fruit albedo preserves in syrup, significantly affected color analyses. The texture was not affected by the parameters studied. Therefore, the use of larger volumes of passion fruit juice and longer cooking time is recommended for the production of passion fruit albedo preserves in syrup to achieve the characteristic yellow color of the fruit.
Resumo:
The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R) included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.
Resumo:
OBJECTIVE To analyze the association between concentrations of air pollutants and admissions for respiratory causes in children. METHODS Ecological time series study. Daily figures for hospital admissions of children aged < 6, and daily concentrations of air pollutants (PM10, SO2, NO2, O3 and CO) were analyzed in the Região da Grande Vitória, ES, Southeastern Brazil, from January 2005 to December 2010. For statistical analysis, two techniques were combined: Poisson regression with generalized additive models and principal model component analysis. Those analysis techniques complemented each other and provided more significant estimates in the estimation of relative risk. The models were adjusted for temporal trend, seasonality, day of the week, meteorological factors and autocorrelation. In the final adjustment of the model, it was necessary to include models of the Autoregressive Moving Average Models (p, q) type in the residuals in order to eliminate the autocorrelation structures present in the components. RESULTS For every 10:49 μg/m3 increase (interquartile range) in levels of the pollutant PM10 there was a 3.0% increase in the relative risk estimated using the generalized additive model analysis of main components-seasonal autoregressive – while in the usual generalized additive model, the estimate was 2.0%. CONCLUSIONS Compared to the usual generalized additive model, in general, the proposed aspect of generalized additive model − principal component analysis, showed better results in estimating relative risk and quality of fit.
Resumo:
Statistical models allow the representation of data sets and the estimation and/or prediction of the behavior of a given variable through its interaction with the other variables involved in a phenomenon. Among other different statistical models, are the autoregressive state-space models (ARSS) and the linear regression models (LR), which allow the quantification of the relationships among soil-plant-atmosphere system variables. To compare the quality of the ARSS and LR models for the modeling of the relationships between soybean yield and soil physical properties, Akaike's Information Criterion, which provides a coefficient for the selection of the best model, was used in this study. The data sets were sampled in a Rhodic Acrudox soil, along a spatial transect with 84 points spaced 3 m apart. At each sampling point, soybean samples were collected for yield quantification. At the same site, soil penetration resistance was also measured and soil samples were collected to measure soil bulk density in the 0-0.10 m and 0.10-0.20 m layers. Results showed autocorrelation and a cross correlation structure of soybean yield and soil penetration resistance data. Soil bulk density data, however, were only autocorrelated in the 0-0.10 m layer and not cross correlated with soybean yield. The results showed the higher efficiency of the autoregressive space-state models in relation to the equivalent simple and multiple linear regression models using Akaike's Information Criterion. The resulting values were comparatively lower than the values obtained by the regression models, for all combinations of explanatory variables.
Resumo:
Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index). The PMs explained more than half of the data variance. This performance is similar to (or even better than) that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd) of soils in regions of complex geology.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
The objective of this study was to adapt a nonlinear model (Wang and Engel - WE) for simulating the phenology of maize (Zea mays L.), and to evaluate this model and a linear one (thermal time), in order to predict developmental stages of a field-grown maize variety. A field experiment, during 2005/2006 and 2006/2007 was conducted in Santa Maria, RS, Brazil, in two growing seasons, with seven sowing dates each. Dates of emergence, silking, and physiological maturity of the maize variety BRS Missões were recorded in six replications in each sowing date. Data collected in 2005/2006 growing season were used to estimate the coefficients of the two models, and data collected in the 2006/2007 growing season were used as independent data set for model evaluations. The nonlinear WE model accurately predicted the date of silking and physiological maturity, and had a lower root mean square error (RMSE) than the linear (thermal time) model. The overall RMSE for silking and physiological maturity was 2.7 and 4.8 days with WE model, and 5.6 and 8.3 days with thermal time model, respectively.
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
Adsorption of Cu(II), Ni(II), Pb(II) and Zn(II) ions from aqueous solutions by N-(3,4-dihydroxybenzyl) chitosan have been carried out. The Langmuir (L), Freundlich (F), Langmuir - Freundlich (LF), Redlich-Peterson (RP) and Tóth (T) adsorption isotherms models have been applied to fit the experimental data. Nonlinear regression computational program "Enzefitte", which is a library of the more commonly used adsorption isotherm equations for obtaining tabular outuput suitable for plotting theoretical of fitted isotherms, has been used to estimate the adsorption parameters. These parameters were used to calculate the amount adsorbed q calc., a function of concentration (C).
Resumo:
Linear programming models are effective tools to support initial or periodic planning of agricultural enterprises, requiring, however, technical coefficients that can be determined using computer simulation models. This paper, presented in two parts, deals with the development, application and tests of a methodology and of a computational modeling tool to support planning of irrigated agriculture activities. Part I aimed at the development and application, including sensitivity analysis, of a multiyear linear programming model to optimize the financial return and water use, at farm level for Jaíba irrigation scheme, Minas Gerais State, Brazil, using data on crop irrigation requirement and yield, obtained from previous simulation with MCID model. The linear programming model outputted a crop pattern to which a maximum total net present value of R$ 372,723.00 for the four years period, was obtained. Constraints on monthly water availability, labor, land and production were critical in the optimal solution. In relation to the water use optimization, it was verified that an expressive reductions on the irrigation requirements may be achieved by small reductions on the maximum total net present value.
Resumo:
The present study was conducted at the Department of Rural Engineering and the Department of Animal Morphology and Physiology of FCAV/Unesp, Jaboticabal, SP, Brazil. The objective was to verify the influence of roof slope, exposure and roofing material on the internal temperature of reduced models of animal production facilities. For the development of the research, 48 reduced and dissemble models with dimensions 1.00 × 1.00 × 0.50 m were used. The roof was shed-type, and the models faced to the North or South directions, with 24 models for each side of exposure. Ceramic, galvanized-steel and fibro tiles were used to build the roofs. Slopes varied between 20, 30, 40 and 50% for the ceramic tile and 10, 30, 40 and 50% for the other two. Inside the models, temperature readings were performed at every hour, for 12 months. The results were evaluated in a general linear model in a nested 3 × 4 × 2 factorial arrangement, in which the effects of roofing material and exposure were nested on the factor Slope. Means were compared by the Tukey test at 5% of probability. After analyzing the data, we observed that with the increase in the slope and exposure to the South, there was a drop in the internal temperature within the model at the geographic coordinates of Jaboticabal city (SP/Brazil).
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.