37 resultados para Gaba


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurons of the mammalian cerebral cortex comprise two broad classes: pyramidal neurons, which project to distant targets, and the inhibitory nonpyramidal cells, the cortical interneurons. Pyramidal neurons are generated in the germinal ventricular zone, which lines the lateral ventricles, and migrate along the processes of radial glial cells to their positions in the developing cortex in an `inside-out' sequence. The GABA-containing nonpyramidal cells originate for the most part in the ganglionic eminence, the primordium of the basal ganglia in the ventral telencephalon. These cells follow tangential migratory routes to enter the cortex and are in close association with the corticofugal axonal system. Once they enter the cortex, they move towards the ventricular zone, possibly to obtain positional information, before they migrate radially in the direction of the pial surface to take up their positions in the developing cortex. The mechanisms that guide interneurons throughout these long and complex migratory routes are currently under investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the effect of the opiate receptor antagonist naloxone on aggression, emotion, feeder control, and eating behavior in high and low aggression female pigeons maintained at 80% of their normal weight and exposed to food competition interactions. Pigeons were divided into pairs by previously ranked high aggression (total time spent in offensive aggression exceeding 60 s/5 min; N = 6 pairs) and low aggression females (time spent in offensive aggression less than 10 s/5 min; N = 6 pairs). A pigeon in each pair received an sc dose of naloxone (1 mg kg-1 ml saline-1) and the other animal received the vehicle. Trials (10 min) were performed 30 min after the naloxone/vehicle administration. The naloxone group of high aggression pigeons showed lower scores of total time spent in offensive aggression (control: 98.6 ± 12.0; naloxone: 46.8 ± 6.6 s; P < 0.05) and higher scores of time spent in emotional responses (control: 3.5 ± 0.6; naloxone: 10.8 ± 2.4 s; P < 0.05) than controls. The other behaviors scored, feeder control and eating behavior, were not affected in this group. The naloxone group of low aggression pigeons, however, showed higher scores of offensive aggression than their controls (5.3 ± 1.3; naloxone: 28.7 ± 8.0 s; P < 0.05). The present results suggest that opiate receptor mechanisms are implicated in offensive aggression responses in high and low aggression pigeons. However, as reported for brain 5-hydroxytryptamine manipulation and GABA-A-benzodiazepine receptor manipulation, the effect of the opiate receptor antagonist on food competition aggression in pigeons was related to their pretreatment level of aggression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO), a free radical gas produced endogenously from the amino acid L-arginine by NO synthase (NOS), has important functions in modulating vasopressin and oxytocin secretion from the hypothalamo-neurohypophyseal system. NO production is stimulated during increased functional activity of magnocellular neurons, in parallel with plastic changes of the supraoptic nucleus (SON) and paraventricular nucleus. Electrophysiological data recorded from the SON of hypothalamic slices indicate that NO inhibits firing of phasic and non-phasic neurons, while L-NAME, an NOS inhibitor, increases their activity. Results from measurement of neurohypophyseal hormones are more variable. Overall, however, it appears that NO, tonically produced in the forebrain, inhibits vasopressin and oxytocin secretion during normovolemic, isosmotic conditions. During osmotic stimulation, dehydration, hypovolemia and hemorrhage, as well as high plasma levels of angiotensin II, NO inhibition of vasopressin neurons is removed, while that of oxytocin neurons is enhanced. This produces a preferential release of vasopressin over oxytocin important for correction of fluid imbalance. During late pregnancy and throughout lactation, fluid homeostasis is altered and expression of NOS in the SON is down- and up-regulated, respectively, in parallel with plastic changes of the magnocellular system. NO inhibition of magnocellular neurons involves GABA and prostaglandin synthesis and the signal-transduction mechanism is independent of the cGMP-pathway. Plasma hormone levels are unaffected by icv 1H-[1, 2, 4]oxadiazolo-[4,3-a]quinoxalin-1-one (a soluble guanylyl cyclase inhibitor) or 8-Br-cGMP administered to conscious rats. Moreover, cGMP does not increase in homogenates of the neural lobe and in microdialysates of the SON when NO synthesis is enhanced during osmotic stimulation. Among alternative signal-transduction pathways, nitrosylation of target proteins affecting activity of ion channels is considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the acute effects of centrally acting antihypertensive drugs on the microcirculation of pentobarbital-anesthetized spontaneously hypertensive rats (SHR). The effects of the sympatho-inhibitory agents clonidine and rilmenidine, known to activate both alpha2-adrenoceptors and nonadrenergic I1-imidazoline binding sites (I1BS) in the central nervous system, were compared to those of dicyclopropylmethyl-(4,5-dimethyl-4,5-dihydro-3H -pyrrol-2-yl)-amine hydrochloride (LNP 509), which selectively binds to the I1BS. Terminal mesenteric arterioles were observed by intravital microscopy. Activation of the central sympathetic system with L-glutamate (125 µg, ic) induced marked vasoconstriction of the mesenteric microcirculation (27 ± 3%; N = 6, P < 0.05). In contrast, the marked hypotensive and bradycardic effects elicited by intracisternal injection of clonidine (1 µg), rilmenidine (7 µg) and LNP 509 (60 µg) were accompanied by significant increases in arteriolar diameter (12 ± 1, 25 ± 10 and 21 ± 4%, respectively; N = 6, P < 0.05). The vasodilating effects of rilmenidine and LNP 509 were two-fold higher than those of clonidine, although they induced an identical hypotensive effect. Central sympathetic inhibition elicited by baclofen (1 µg, ic), a GABA B receptor agonist, also resulted in vasodilation of the SHR microvessels. The acute administration of clonidine, rilmenidine and LNP 509 also induced a significant decrease of cardiac output, whereas a decrease in systemic vascular resistance was observed only after rilmenidine and LNP 509. We conclude that the normalization of blood pressure in SHR induced by centrally acting antihypertensive agents is paralleled by important vasodilation of the mesenteric microcirculation. This effect is more pronounced with substances acting preferentially (rilmenidine) or exclusively (LNP 509) upon I1BS than with those presenting important alpha2-adrenergic activity (clonidine).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pharmacological evidence indicates that the basolateral nucleus of the amygdala (BLA) is involved in the mediation of inhibitory avoidance but not of escape behavior in the elevated T-maze test. These defensive responses have been associated with generalized anxiety disorder (GAD) and panic disorder, respectively. In the present study, we determined whether the BLA plays a differential role in the control of inhibitory avoidance and escape responses in the elevated T-maze. Male Wistar rats (250-280 g, N = 9-10 in each treatment group) were pre-exposed to one of the open arms of the maze for 30 min and 24 h later tested in the model after inactivation of the BLA by a local injection of the GABA A receptor agonist muscimol (8 nmol in 0.2 µL). It has been shown that a prior forced exposure to one of the open arms of the maze, by shortening latencies to withdrawal from the open arm during the test, improves the escape task as a behavioral index of panic. The effects of muscimol in the elevated T-maze were compared to those caused by this GABA agonist in the avoidance reaction generated in the light/dark transition test. This defensive behavior has also been associated with GAD. In the elevated T-maze, intra-BLA injection of muscimol impaired inhibitory avoidance (control: 187.70 ± 14.90 s, muscimol: 37.10 ± 2.63 s), indicating an anxiolytic effect, without interfering with escape performance. The drug also showed an anxiolytic effect in the light/dark transition test as indicated by the increase in the time spent in the lighted compartment (control: 23.50 ± 2.45 s, muscimol: 47.30 ± 4.48 s). The present findings point to involvement of the BLA in the modulation of defensive responses that have been associated with GAD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antipyrine (At) and dipyrone (Dp) delay gastric emptying (GE) in rats. The objective of the present study was to assess the effects of intravenous (iv) and intracerebroventricular (icv) administration of At and Dp on the GE of liquid by rats. GE was assessed in male Wistar rats (5-10 in each group) 10 min after the icv or iv drug injection by measuring percent gastric retention (%GR) of a saline test meal labeled with phenol red 10 min after administration by gavage. The At iv group was significantly higher (64.4 ± 2.6%) compared to control (33.4 ± 1.5%) but did not differ from the Dp group (54.3 ± 3.8%). After icv administration of At, %GR (34.2 ± 2%) did not differ from control (32.6 ± 1.9%), but was significantly higher after Dp (54.5 ± 2.3%). Subdiaphragmatic vagotomy significantly reduced %GR in the At group (30.2 ± 0.7%) compared to the sham group, but was significantly higher than in the controls (23.0 ± 0.5%). In the animals treated with At iv, baclofen significantly reduced %GR (28.3 ± 2.4%) compared to vehicle-treated animals (55.2 ± 3.2%). The same occurred in the animals treated iv with vehicle and icv with baclofen. Although vagotomy and baclofen reduced %GR per se, the reduction was twice more marked in the animals treated with At. The results suggest that At administered iv, but not icv, delays GE of liquid in rats with the participation, at least in part, of the vagus nerve and that this phenomenon is blocked by the activation of GABA B receptors in the central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dipyrone (Dp) delays gastric emptying (GE) in rats. There is no information about whether 4-aminoantipyrine (AA), one of its metabolites, has the same effect. The objectives of the present study were to assess the effects of AA and Dp on GE when administered intravenously (iv) and intracerebroventricularly (icv) (240 µmol/kg and 4 µmol/animal, respectively) and on gastric compliance when administered iv (240 µmol/kg). GE was determined in male Wistar rats weighing 250-300 g (5-10 per group) after icv or iv injection of the drug by measuring percent gastric retention (GR) of a saline meal labeled with phenol red 10 min after administration by gavage. Gastric compliance was estimated in anesthetized rats (10-11 per group), with the construction of volume-pressure curves during intragastric infusion of a saline meal. Compliance was significantly greater in animals receiving Dp (mean ± SEM = 0.26 ± 0.009 mL/mmHg) and AA (0.24 ± 0.012 mL/mmHg) than in controls (0.19 ± 0.009 mL/mmHg). AA and Dp administered iv significantly increased GR (64.4 ± 2.5 and 54.3 ± 3.8%, respectively) compared to control (34 ± 2.2%), a phenomenon observed only with Dp after icv administration. Subdiaphragmatic vagotomy reduced the effect of AA (GR = 31.4 ± 1.5%) compared to sham-treated animals. Baclofen, a GABA B receptor agonist, administered icv significantly reduced the effect of AA (GR = 28.1 ± 1.3%). We conclude that Dp and AA increased gastric compliance and AA delayed GE, with the participation of the vagus nerve, through a pathway that does not involve a direct action of the drug on the central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The learned helplessness (LH) paradigm is characterized by learning deficits resulting from inescapable events. The aims of the present study were to determine if protein-calorie malnutrition (PCM) alters learning deficits induced by LH and if the neurochemical changes induced by malnutrition alter the reactivity to treatment with GABA-ergic and serotonergic drugs during LH. Well-nourished (W) and PCM Wistar rats (61 days old) were exposed or not to inescapable shocks (IS) and treated with gepirone (GEP, 0.0-7.5 mg/kg, intraperitoneally, N = 128) or chlordiazepoxide (0.0-7.5 mg/kg, intraperitoneally, N = 128) 72 h later, 30 min before the test session (30 trials of escape learning). The results showed that rats exposed to IS had higher escape latency than non-exposed rats (12.6 ± 2.2 vs 4.4 ± 0.8 s) and that malnutrition increased learning impairment produced by LH. GEP increased the escape latency of W animals exposed or non-exposed to IS, but did not affect the response of PCM animals, while chlordiazepoxide reduced the escape deficit of both W and PCM rats. The data suggest that PCM animals were more sensitive to the impairment produced by LH and that PCM led to neurochemical changes in the serotonergic system, resulting in hyporeactivity to the anxiogenic effects of GEP in the LH paradigm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our objective was to determine the effect of arachidonylethanolamide (anandamide, AEA) injected intracerebroventricularly (icv) into the lateral ventricle of the rat brain on submandibular gland (SMG) salivary secretion. Parasympathetic decentralization (PSD) produced by cutting the chorda tympani nerve strongly inhibited methacholine (MC)-induced salivary secretion while sympathetic denervation (SD) produced by removing the superior cervical ganglia reduced it slightly. Also, AEA (50 ng/5 µL, icv) significantly decreased MC-induced salivary secretion in intact rats (MC 1 µg/kg: control (C), 5.3 ± 0.6 vs AEA, 2.7 ± 0.6 mg; MC 3 µg/kg: C, 17.6 ± 1.0 vs AEA, 8.7 ± 0.9 mg; MC 10 µg/kg: C, 37.4 ± 1.2 vs AEA, 22.9 ± 2.6 mg). However, AEA did not alter the significantly reduced salivary secretion in rats with PSD, but decreased the slightly reduced salivary secretion in rats with SD (MC 1 µg/kg: C, 3.8 ± 0.8 vs AEA, 1.4 ± 0.6 mg; MC 3 µg/kg: C, 14.7 ± 2.4 vs AEA, 6.9 ± 1.2 mg; P < 0.05; MC 10 µg/kg: C, 39.5 ± 1.0 vs AEA, 22.3 ± 0.5 mg; P < 0.001). We showed that the inhibitory effect of AEA is mediated by cannabinoid type 1 CB1 receptors and involves GABAergic neurotransmission, since it was blocked by previous injection of the CB1 receptor antagonist AM251 (500 ng/5 µL, icv) or of the GABA A receptor antagonist, bicuculline (25 ng/5 µL, icv). Our results suggest that parasympathetic neurotransmission from the central nervous system to the SMG can be inhibited by endocannabinoid and GABAergic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Female rats are intensely affected by cocaine, with estrogen probably playing an important role in this effect. Progesterone modulates the GABA system and attenuates the effects of cocaine; however, there is no information about its relevance in changing GABA synthesis pathways after cocaine administration to female rats. Our objective was to investigate the influence of progesterone on the effects of repeated cocaine administration on the isoenzymes of glutamic acid decarboxylase (GAD65 and GAD67) mRNA in brain areas involved in the addiction circuitry. Ovariectomized, intact and progesterone replacement-treated female rats received saline or cocaine (30 mg/kg, ip) acutely or repeatedly. GAD isoenzyme mRNA levels were determined in the dorsolateral striatum (dSTR) and prefrontal cortex (PFC) by RT-PCR, showing that repeated, but not acute, cocaine decreased GADs/β-actin mRNA ratio in the dSTR irrespective of the hormonal condition (GAD65: P < 0.001; and GAD67: P = 0.004). In the PFC, repeated cocaine decreased GAD65 and increased GAD67 mRNA ratio (P < 0.05). Progesterone replacement decreased both GAD isoenzymes mRNA ratio after acute cocaine in the PFC (P < 0.001) and repeated cocaine treatment reversed this decrease (P < 0.001). These results suggest that cocaine does not immediately affect GAD mRNA expression, while repeated cocaine decreases both GAD65 and GAD67 mRNA in the dSTR of female rats, independently of their hormonal conditions. In the PFC, repeated cocaine increases the expression of GAD isoenzymes, which were decreased due to progesterone replacement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medial hypothalamus is part of a neurobiological substrate controlling defensive behavior. It has been shown that a hypothalamic nucleus, the dorsomedial hypothalamus (DMH), is involved in the regulation of escape, a defensive behavior related to panic attacks. The role played by the DMH in the organization of conditioned fear responses, however, is less clear. In the present study, we investigated the effects of reversible inactivation of the DMH with the GABA A agonist muscimol on inhibitory avoidance acquisition and escape expression by male Wistar rats (approximately 280 g in weight) tested in the elevated T-maze (ETM). In the ETM, inhibitory avoidance, a conditioned defensive response, has been associated with generalized anxiety disorder. Results showed that intra-DMH administration of the GABA A receptor agonist muscimol inhibited escape performance, suggesting an antipanic-like effect (P < 0.05), without changing inhibitory avoidance acquisition. Although a higher dose of muscimol (1.0 nmol/0.2 µL; N = 7) also altered locomotor activity in an open field when compared to control animals (0.2 µL saline; N = 13) (P < 0.05), the lower dose (0.5 nmol/0.2 µL; N = 12) of muscimol did not cause any motor impairment. These data corroborate previous evidence suggesting that the DMH is specifically involved in the modulation of escape. Dysfunction of this regulatory mechanism may be relevant in the genesis/maintenance of panic disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epilepsy is a neurological disorder associated with excitatory and inhibitory imbalance within the underlying neural network. This study evaluated inhibitory γ-amino-butyric acid (GABA)ergic modulation in the CA1 region of the hippocampus of male Wistar rats and Wistar audiogenic rats (aged 90 ± 3 days), a strain of inbred animals susceptible to audiogenic seizures. Field excitatory postsynaptic potentials and population spike complexes in response to Schaffer collateral fiber stimulation were recorded in hippocampal slices before and during application of picrotoxin (50 µM, 60 min), a GABA A antagonist, and the size of the population spike was quantified by measuring its amplitude and slope. In control audiogenic-resistant Wistar rats (N = 9), picrotoxin significantly increased both the amplitude of the population spike by 51 ± 19% and its maximum slope by 73 ± 21%. In contrast, in slices from Wistar audiogenic rats (N = 6), picrotoxin caused no statistically significant change in population spike amplitude (33 ± 46%) or slope (11 ± 29%). Data are reported as means ± SEM. This result indicates a functional reduction of GABAergic neurotransmission in hippocampal slices from Wistar audiogenic rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well recognized that stressful experiences promote robust emotional memories, which are well remembered. The amygdaloid complex, principally the basolateral complex (BLA), plays a pivotal role in fear memory and in the modulation of stress-induced emotional responses. A large number of reports have revealed that GABAergic interneurons provide a powerful inhibitory control of the activity of projecting glutamatergic neurons in the BLA. Indeed, a reduced GABAergic control in the BLA is essential for the stress-induced influence on the emergence of associative fear memory and on the generation of long-term potentiation (LTP) in BLA neurons. The extracellular signal-regulated kinase (ERK) subfamily of the mitogen-activated protein kinase (MAPK) signaling pathway in the BLA plays a central role in the consolidation process and synaptic plasticity. In support of the view that stress facilitates long-term fear memory, stressed animals exhibited a phospho-ERK2 (pERK2) increase in the BLA, suggesting the involvement of this mechanism in the promoting influence of threatening stimuli on the consolidation fear memory. Moreover, the occurrence of reactivation-induced lability is prevented when fear memory is encoded under intense stressful conditions since the memory trace remains immune to disruption after recall in previously stressed animals. Thus, the underlying mechanism in retrieval-induced instability seems not to be functional in memories formed under stress. All these findings are indicative that stress influences both the consolidation and reconsolidation fear memory processes. Thus, it seems reasonable to propose that the emotional state generated by an environmental challenge critically modulates the formation and maintenance of long-term fear memory.