25 resultados para Fluorescence anisotropy
Resumo:
The objective of this work was to investigate the injuries caused to the photosynthetic apparatus of three types of rice exposed to application of imidazolinone group herbicides. Two experiments were conducted using herbicides Imazethapyr+imazapic and Imazapyr+imazapic, in a split-plot experimental design, and a 3 x 3 factorial, with six replications. The first factor (A) consisted of the herbicide rates 0, 100 e 200 g ha-1 of Imazethapyr+imazapic and 0, 140 e 280 g ha-1 of Imazapyr+imazapic; factor B consisted of type of rice (cv. Puitá Inta CL, sensitive red rice ecotype and red rice ecotype with suspected herbicide tolerance to Imidazolinone). Chlorophyll a fluorescence parameters were evaluated in plants at 30 days after herbicide application, using a portable fluorometer (HandyPEA, Hanstech). The photosynthetic metabolism of cv. Puitá Inta CL was found to tolerate commercial dosages of both herbicides. High sensitivity to the herbicides was observed for the sensitive red rice ecotype, while the photosynthetic apparatus of red rice ecotype with suspected herbicide tolerance showed high tolerance to both herbicides applied at rates higher than the commercial rate. The application of chemical herbicides of the imidazolinone group on rice plants causes changes in the photosynthetic metabolism of plants, detected by evaluating the emission of transient chlorophyll a fluorescence. This method can be useful in helping detect resistance and/or tolerance of red rice plants to herbicides of the imidazolinone group.
Resumo:
Chlorophyll fluorescence is currently used as a rapid diagnostic and nondestructive method to detect and quantify damage on the photosynthetic apparatus of leaves on weeds, crops and ornamental/coniferous trees in response to both environmental stress and herbicides. This study aimed to evaluate chlorophyll fluorescence in guanandi plants (Calophyllum brasiliense) after application of different postemergence herbicides. The experiment was performed in a completely randomized design, with six treatments (control, bentazon, sulfentrazone, isoxaflutole, atrazine and glyphosate) and five replications. The herbicide treatments were applied with a stationary sprayer, and electron transport rate (ETR) was subsequently analyzed with OS5p Multi-Mode Chlorophyll Fluorometer. In the monitored period, guanandi plants subjected to atrazine showed higher sensitivity to chlorophyll fluorescence than the other treatments. Although bentazon is a photosystem II inhibitor, it showed no major changes in electron transport for the studied species and in the monitored period. In summary, ETR is a good parameter to evaluate the effect of some herbicides on Calophyllum brasiliense plants.
Resumo:
The aim of this study was to investigate the photosynthetic performance in populations of two legume tree species, Stryphnodendron adstringens (Mimosoideae), typical from Cerrado, and Cassia ferruginea (Caesalpinoideae) from the Atlantic Rain Forest. The photosynthetic traits were assessed by measures of chlorophyll fluorescence in progenies of naturally pollinated plants from three populations of S. adstringens and a population of C. ferruginea. Plants of S. adstringens growing under similar conditions of C. ferruginea plants demanded higher light values for photosynthesis saturation, 600 µmol.m-2.s-1 and 350 µmol.m-2.s-1 respectively, and showed higher intrinsic photosynthetic efficiency of photosystem II, Fv/Fm of 0.814 versus 0.783 in C. ferruginea. The highest values of Fv/Fm observed in S. adstringens can explain the highest electron transport rates (ETR) obtained for this species. No significant differences were found among progenies from different C. ferruginea trees nor among populations of S. adstringens, and only in few cases, variation among progenies within populations were found for S. adstringens plants. The fact that fluorescence parameters distinguished species but not populations or most of progenies may be related to low intraspecific genetic variation of these chlorophyll fluorescence traits or due to lack of expression on genetic differences in plants under no stressful conditions.
Resumo:
Interphase cytogenetics, utilizing fluorescence in situ hybridization (FISH) techniques, has been successfully applied to diffuse and solid tissue specimens. Most studies have been performed on isolated cells, such as blood or bone marrow cells; a few have been performed on cells from body fluids, such as amniotic fluid, urine, sperm, and sputum. Mechanically or chemically disaggregated cells from solid tissues have also been used as single cell suspensions for FISH. Additionally, intact organized tissue samples represented by touch preparations or thin tissue sections have been used, especially in cancer studies. Advantages and pitfalls of application of FISH methodology to each type of specimen and some significant biological findings achieved are illustrated in this overview.
Resumo:
R,S-sotalol, a ß-blocker drug with class III antiarrhythmic properties, is prescribed to patients with ventricular, atrial and supraventricular arrhythmias. A simple and sensitive method based on HPLC-fluorescence is described for the quantification of R,S-sotalol racemate in 500 µl of plasma. R,S-sotalol and its internal standard (atenolol) were eluted after 5.9 and 8.5 min, respectively, from a 4-micron C18 reverse-phase column using a mobile phase consisting of 80 mM KH2PO4, pH 4.6, and acetonitrile (95:5, v/v) at a flow rate of 0.5 ml/min with detection at lex = 235 nm and lem = 310 nm, respectively. This method, validated on the basis of R,S-sotalol measurements in spiked blank plasma, presented 20 ng/ml sensitivity, 20-10,000 ng/ml linearity, and 2.9 and 4.8% intra- and interassay precision, respectively. Plasma sotalol concentrations were determined by applying this method to investigate five high-risk patients with atrial fibrillation admitted to the Emergency Service of the Medical School Hospital, who received sotalol, 160 mg po, as loading dose. Blood samples were collected from a peripheral vein at zero, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0 and 24.0 h after drug administration. A two-compartment open model was applied. Data obtained, expressed as mean, were: CMAX = 1230 ng/ml, TMAX = 1.8 h, AUCT = 10645 ng h-1 ml-1, Kab = 1.23 h-1, a = 0.95 h-1, ß = 0.09 h-1, t(1/2)ß = 7.8 h, ClT/F = 3.94 ml min-1 kg-1, and Vd/F = 2.53 l/kg. A good systemic availability and a fast absorption were obtained. Drug distribution was reduced to the same extent in terms of total body clearance when patients and healthy volunteers were compared, and consequently elimination half-life remained unchanged. Thus, the method described in the present study is useful for therapeutic drug monitoring purposes, pharmacokinetic investigation and pharmacokinetic-pharmacodynamic sotalol studies in patients with tachyarrhythmias.
Resumo:
Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10) and Desirée (ATPase/ADPase = 1) isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases.
Resumo:
We have developed a system with two epi-illumination sources, a DC-regulated lamp for transillumination and mechanical switches for rapid shift of illumination and detection of defined areas (250-750 µm²) by fluorescence and phosphorescence videomicroscopy. The system permits investigation of standard microvascular parameters, vascular permeability as well as intra- and extravascular PO2 by phosphorescence quenching of Pd-meso-tetra (4-carboxyphenyl) porphine (PORPH). A Pechan prism was used to position a defined region over the photomultiplier and TV camera. In order to validate the system for in vivo use, in vitro tests were performed with probes at concentrations that can be found in microvascular studies. Extensive in vitro evaluations were performed by filling glass capillaries with solutions of various concentrations of FITC-dextran (diluted in blood and in saline) mixed with different amounts of PORPH. Fluorescence intensity and phosphorescence decay were determined for each mixture. FITC-dextran solutions without PORPH and PORPH solutions without FITC-dextran were used as references. Phosphorescence decay curves were relatively unaffected by the presence of FITC-dextran at all concentrations tested (0.1 µg/ml to 5 mg/ml). Likewise, fluorescence determinations were performed in the presence of PORPH (0.05 to 0.5 mg/ml). The system was successfully used to study macromolecular extravasation and PO2 in the rat mesentery circulation under controlled conditions and during ischemia-reperfusion.
Resumo:
The distinction between normal and leukemic bone marrow (BM) B-precursors is essential for the diagnosis and treatment monitoring of acute lymphoblastic leukemia (ALL). In order to evaluate the potential use of quantitative fluorescence cytometry (QFC) for this distinction, we studied 21 normal individuals and 40 patients with CD10+ ALL. We characterized the age-related changes of the CD10, CD19, TdT, CD34 and CD79a densities in normal and leukemic BM. Compared to normal adults, the B-precursors from normal children expressed significantly lower values of CD34-specific antibody binding capacity (SABC) (median value of 86.6 vs 160.2 arbitrary units (a.u.) in children and adults, respectively). No significant age-related difference was observed in the expression of the other markers in the normal BM, or in any of the markers in the leukemic BM. Based on the literature, we set the cut-off value for the normal CD10 expression at 45 x 10³ a.u. for both age groups. For the remaining markers we established the cut-off values based on the minimum-maximum values in the normal BM in each age group. The expression of CD10 was higher than the cut-off in 30 ALL cases and in 18 of them there was a concomitant aberrant expression of other markers. In 9 of the 10 CD10+ ALL with normal CD10 SABC values, the expression of at least one other marker was aberrant. In conclusion, the distinction between normal and leukemic cells by QFC was possible in 38/40 CD10+ ALL cases.
Resumo:
The binding of chlorpromazine (CPZ) and hemin to bovine serum albumin was studied by the fluorescence quenching technique. CPZ is a widely used anti-psychotic drug that interacts with blood components, influences bioavailability, and affects function of several biomolecules. Hemin is an important ferric residue of hemoglobin that binds within the hydrophobic region of albumin with high specificity. Quenching of the intrinsic fluorescence of bovine serum albumin (BSA) was observed by selectively exciting tryptophan residues at 290 nm. Emission spectra were recorded in the range from 300 to 450 nm for each quencher addition. Stern-Volmer graphs were plotted, and the quenching constant estimated for BSA solution titrated with hemin at 25ºC was 1.44 (± 0.05) x 10(5) M-1. Results showed that bovine albumin tryptophans are not equally accessible to CPZ, in agreement with the idea that polar or charged quenchers have more affinity for amino acid residues on the outer wall of the protein. Hemin added to albumin solution at a molar ratio of 1:1 quenched about 25% of their fluorescence. The quenching effect of CPZ on albumin-hemin solution was stronger than on pure BSA. This increase can be the result of combined conformational changes in the structure of albumin caused firstly by hemin and then by CPZ. Our results suggest that the primary binding site for hemin on bovine albumin may be located asymmetrically between the two tryptophans along the sequence formed by subdomains IB and IIA, closer to tryptophan residue 212.
Resumo:
The occurrence of green seeded soybeans [Glycine max (L.) Merrill] is a problem closely related to unfavorable climatic conditions, mainly drought, that occurs during the final stages of seed maturation. This problem causes serious losses to soybean seed quality in Brazil. In these seeds, chlorophyll is not properly degraded during maturation, drastically reducing seed quality. Using the chlorophyll fluorescence technique, it is possible to remove green seeds from the seed lot, improving seed quality in several species in which the occurrence of green seeds is also a problem. The objective of this research was to study the use of the chlorophyll fluorescence technique in sorting green seeds from soybean seed samples and its effects on quality. Five seed samples of soybean, cultivar TMG 113 RR, with 0%, 5%, 10%, 15%, and 20% of green seeds were used in this study. Seeds from each sample were sorted into two fractions based on the chlorophyll fluorescence signals and then compared to the control (non-sorted seeds). The sorting process showed great differences between the low and high chlorophyll fluorescence fractions. It was concluded that: green seeds of soybeans present high chlorophyll fluorescence and that this characteristic affects the quality of the seeds; it is possible to improve the quality of soybean seed by removing green seeds using the chlorophyll fluorescence sorting technique.