57 resultados para Flexible Pavement Deterioration Mechanism
Resumo:
The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM). The best result in the series was obtained with the addition of verapamil (40 μM), which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.
Resumo:
Abstract: The objective of this work was to define procedures to assess the tolerance of cassava genotypes to postharvest physiological deterioration (PPD) and to microbial deterioration (MD). Roots of six cassava genotypes were evaluated in two experiments, during storage under different environmental conditions: high temperature and low soil moisture; or low temperature and high soil moisture. Roots were treated or not with fungicide (carbendazim) before storage. Genotype reactions to MD and PPD were evaluated at 0, 2, 5, 10, 15, 20, and 30 days after harvest (DAH), in the proximal, medial, and distal parts of the roots. A diagrammatic scale was proposed to evaluate nonperipheral symptoms of PPD. Fungicide treatment and root position did not influence PPD expression; however, all factors had significant effect on MD severity. Genotypes differed as to their tolerance to PPD and MD. Both deterioration types were more pronounced during periods of higher humidity and lower temperatures. The fungicide treatment increased root shelf life by reducing MD severity up to 10 DAH. Whole roots showed low MD severity and high PPD expression up to 10 DAH, which enabled the assessment of PPD without significant interference of MD symptoms during this period.
Resumo:
Abstract:The objective of this work was to develop a scale to assess the severity of postharvest physiological deterioration (PPD) of cassava roots, and to validate this scale for accuracy and reproducibility estimates. A diagrammatic scale (0 to 100%) for the damaged roots was analyzed according to precision, accuracy, and reproducibility. Seven evaluators (four with experience and three without it) quantified the PPD severity, with or without the scale, considering 150 roots with different levels of PPD. Without and with the use of the scale, respectively, the inexperienced evaluators obtained coefficients of determination (R2) from 0.76 to 0.86 and 0.87 to 0.92, and the experienced evaluators obtained R2 from 0.90 to 0.96 and 0.96 to 0.97. The values of the intercept (a) obtained by both the experienced and inexperienced evaluators who did not use the scale were all significant, while after using the scale, only two evaluators got values that were not significantly different from one. Evaluation reproducibility between the evaluators ranged from 0.61 to 0.91 for the inexperienced ones and from 0.83 to 0.95 for the experienced ones. The proposed diagrammatic scale was considered appropriate to estimate the severity of PPD in cassava roots, and can be used to identify sources of tolerance to postharvest deterioration.
Resumo:
This paper presents a review of the concepts involved in the working mechanism of the ion-selective electrodes, searching a historical overview, moreover to describe the new advances in the area.
Resumo:
Cyclic voltammetry was used to study 3,4-dihydroxybenzaldehyde (3,4-DHB) electropolymerization processes on carbon paste electrodes. The characteristics of the electropolymerized films were highly dependent on pH, anodic switching potential, scan rate, 3,4-DHB concentrations and number of cycles. Film stability was determined in citrate/phosphate buffer solutions at the same pH used during the electropolymerization process. The best conditions to prepare carbon paste modified electrodes were pH 7.8; 0.0 <= Eapl <= 0.25 V; 10 mV s-1; 0.25 mmol L-1 3,4-DHB and 10 scans. These carbon paste modified electrodes were used for NADH catalytic detection at 0.23 V in the range 0.015 <= [NADH] <= 0.21 mmol L-1. Experimental data were used to propose a mechanism for the 3,4--DHB electropolymerization processes, which involves initial phenoxyl radical formation.
Resumo:
Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.
Resumo:
Over 50 years, several scientists and industries have developed new alternatives for wastewater treatment and remediation. Recently, electrochemical technology has been largely developed mainly because of its versatility and environmental compatibility. Scientific contributions about role of the electrode material have allowed determining that the influence of material in the selectivity is an important parameter. However, to interpret this behavior, comprehensive physical chemistry models for organics destruction, related to electrochemical phenomena and material surfaces, were proposed in the last decades. So, this paper presents a critical and comprehensive review about the principles and recent mechanism advances in electrocatalysis for wastewater treatment.
Resumo:
Quetiapine is an atypical antipsychotic used to treat schizophrenia. However, despite great interest for its chronic therapeutic use, quetiapine has some important side effects such as weight gain induction. The development of a quetiapine nanocarrier can potentially target the drug into central nervous system, resulting in a reduction of systemic side effects and improved patient treatment. In the present work, a simple liquid chromatography/ultraviolet detection (LC/UV) analytical method was developed and validated for quantification of total quetiapine content in lipid core nanocapsules as well as for determination of incorporation efficiency. An algorithm proposed by Oliveira et al. (2012) was applied to characterize the distribution of quetiapine in the pseudo-phases of the nanocarrier, leading to a better understanding of the quetiapine nanoparticles produced. The analytical methodology developed was specific, linear in the range of 0.5 to 100 µg mL−1 (r2 > 0,99), and accurate and precise (R.S.D < ±5%). The absolute recovery of quetiapine from the nanoparticles was approximately 98% with an incorporation efficiency of approximately 96%. The results indicated that quetiapine was present in a type III distribution according to the algorithm, and was mainly located in the core of the nanoparticle because of its logD in the formulation pH (6.86 ± 0.4).
Resumo:
The kinetics and mechanism of the reactions between 4(2pyridylazo)-resorcinol and Zn2+, Cu2+ and Zn2++Cu2+ equimolar mixtures were studied. The reactions were performed in aqueous solution (pH = 8.5, borate buffer) and monitored spectrophotometrically at 500 nm using stopped-flow technique. Spectral and kinetic data indicate that the Zn2++Cu2+ equimolar mixture behaves as an unique species and it can be attributed to the interactions of Zn2+ and of Cu2+ with water molecules in the aqueous solution. A mechanism is proposed and the rate constants are calculated.
Resumo:
One filler often utilized in flexible polyurethane foams is calcium carbonate (CaCO3) because it is non-abrasiveness, non-toxicity and facilitated pigmentation. However, it is observed that the excess of commercial CaCO3 utilized in industry possibly causing permanent deformations and damaging the quality of the final product. The effect of different concentrations of commercial CaCO3, in flexible foams, was studied. Different concentrations of CaCO3 were used for the synthesis of flexible polyurethane foams, which were submitted to morphological and thermal analyses to verify the alterations provoked by the progressive introduction of this filler.
Resumo:
The objectives of this work were to analyze seed behaviour under controlled deterioration and estimate viability equations for forest species Eucalyptus grandis and Pinus taeda. Desired moisture content levels were achieved from initial values after either rehydration over water or drying over silica gel, both at 25 ºC. Seed sub samples with 8 moisture contents each for E. grandis (1.2 to 18.1%, initial value of 11.3%) and P. taeda (1.5 to 19.5%, initial value of 12.9%) were sealed in laminate aluminium-foil packets and stored in incubators maintained at 40, 50 and 65 ºC. The seeds from these species exhibited true orthodox and sub-orthodox storage behaviour, respectively, however E. grandis showed higher seed storability, probably due to a different seed chemical composition. Lowest moisture content limits estimated for application of the viability equations at 65 ºC were 4.9 and 4.1 mc for E. grandis and P. taeda, on equilibrium with ±20% RH. The viability equation estimated quantified the response of seed longevity to storage environment well with K E = 9.661 and 8.838; C W = 6.467 and 5.981; C H = 0.03498 and 0.10340; C Q = 0.0002330 and 0.0005476, for E. grandis and P. taeda, respectively.
Resumo:
This work objectified to evaluate the efficiency of two meter mechanism of corn seeds when submitted to different forward speed and soil management system during the non-tillage seeding. It was used a factorial design in randomized blocks. The factors whose effects were examined were related to the seeders with pneumatic and horizontal disk meter mechanisms for the distribution of the seeds, to the set tractor-seeder forward speeds (4.4; 8.0 and 9.8 km h-1), and to the soil management system considering the corn no-tillage seeding over minimum tillage with chisel plow and the no-tillage system for the seeding of oat culture (Avena strigosa Schreb). It was verified that the forward speed didn't influence the initial and final stands of plants but it interfered in the regularity of longitudinal distribution of plants. The smallest speed provided the largest percentile of normal spacing between plants. The pneumatic meter mechanism presented better performance than the horizontal disk perforated in the longitudinal distribution of plants. About corn productivity aspect it's indifferent the recommendation of use for pneumatic and perforated horizontal disk meter mechanism of seeds.
Resumo:
In São Paulo State, mainly in rural areas, the utilization of wooden poles is observed for different purposes. In this context, wood in contact with the ground presents faster deterioration, which is generally associated to environmental factors and, especially to the presence of fungi and insects. With the use of mathematical models, the useful life of wooden structures can be predicted by obtaining "climatic indexes" to indicate, comparatively among the areas studied, which have more or less tendency to fungi and insects attacks. In this work, by using climatological data of several cities at São Paulo State, a simplified mathematical model was obtained to measure the aggressiveness of the wood in contact with the soil.
Resumo:
OBJECTIVE: To evaluate the importance of flexible bronchoscopy in tracheostomy patients in the process of decannulation to assess the incidence and types of laryngotracheal injury and compare the presence of such lesions with clinical criteria used for decannulation. METHODS: We studied 51 tracheostomized patients aged between 19 and 87 years, with tracheal stent for a mean of 46 ± 28 days and with clinical criteria for decannulation. They were submitted to tracheostomy tube occlusion tolerance testfor 24 hours, and then to flexible bronchoscopy. We described and classified the diagnosed laryngotracheal changes. We compared the clinical criteria for decannulation indication with the bronchoscopy-diagnosed laryngotracheal injuries that contraindicated decannulation. We identified the factors that could interfere in decannulation and evaluated the importance of bronchoscopy as part of the process. RESULTS: Forty (80.4%) patients had laryngotracheal alterations. Of the 40 patients considered clinically fit to decannulation, eight (20%) (p = 0.0007) presented with laryngotracheal injuries at bronchoscopy that contraindicated the procedure. The most frequent laryngeal alteration was vocal cords lesion, in 15 (29%) individuals, and granuloma, the most prevalent tracheal lesion, in 14 (27.5%) patients. CONCLUSION: flexible bronchoscopy showed a large number of laryngotracheal injuries, the most frequent being the vocal cords injury in the larynx and the granuloma in the trachea, which contributed to increase the decannulation procedure safety.
Resumo:
The objective of this work is to describe the design and the implementation of an experiment to study the dynamics and the active control of a slewing multi-link flexible structure. The experimental apparatus was designed to be representative of a flexible space structure such as a satellite with multiple flexible appendages. In this study we describe the design procedures, the analog and digital instrumentation, the analytical modeling together with model validation studies carried out through experimental modal testing and parametric system identification studies in the frequency domain. Preliminary results of a simple positional control where the sensor and the actuator are positioned physically at the same point is also described.