61 resultados para Flavor-changing neutral current
Resumo:
The lesser grison (Galictis cuja) is one of the least-known mustelids in the Neotropics, despite its broad range across South America. This study aimed to explore current knowledge of the distribution of the species to identify gaps in knowledge and anticipate its full geographic distribution. Eighty-nine articles have mentioned G. cuja since 1969, but only 13 focused on the species. We generated a detailed model of the species' potential distribution that validated previous maps, but with improved detail, supporting previous southernmost records, and providing a means of identifying priority sites for conservation and management of the species.
Resumo:
A survey of the autopsy data on hepatosplenic schistosomiasis during periods, before and after the advent of new chemotherapeutic drugs, revealed that: a) the pathological presentation was the same for the two periods; b) the number of cases in the last five years is progressively decreasing; c) hepatosplenic disease due to schistosomiasis is becoming rare in young people. These data represent a change in the pattern of pathology in schistosomiasis, probably related to new chemotherapy.
Resumo:
There has been increasing interest over past decade in exploring the possibility of using new biotechinology to produce new products and to improve the old productive process. The researches and applications of genetic engineering, cell fusion, mutagenesis, cell and enzyme immobilization in enzyme, antibiotic, vitamine, steroid, amino acid, organic acid, solvent, food and brewage industries is reviewed.
Resumo:
Most opinion favors the origin of the malaria parasites from a coccidial ancestor. It is assumed that whatever the process through which the coccidia differentiated into a Plasmodium this phenomenon very probably occured millions of year ago, and during that differentiation process the original coccidia vanished. Therefore it has never repeated. At the light of some experiments the existence, at the present time, of a coccidial cycle of development in the malaria parasites, is proposed. The conection routes and mechanisms through which the malaria parasite changes to a coccidial life, and the routes in reverse are exposed. Transmission of the malaria-coccidial forms is suggested.
Resumo:
This paper discusses current evidence for the relationship between polyclonal lymphocyte activation, specific immunossupression with decreased resistance, and autoimmune pathology, that are all often found associated with infections by a variety of virus, bacteria and parasites . The central question of class determination of immune effector activities is considered in the context of the cellular targets for nonspecific mitogenic activities associated with infection. A model is presented to integrate these findings: mitogenens produced by the microorganism or the infected cells are preferentially active on CD5 B cells, the resulting over-production of IL-10 will tend to bias all immune activities in to a Th-2mode of effector functions, with high titers of polyclonal antibodies and litle or no production of gamma IFN and other "inflamatory"lymphokines that often mediate resistance. In turn these conditions allow for parasite persistence and the corresponding long-term disregulation of self-directed immune reactivities, resulting in autoimmunity in the chronic phase. This model would predict that selective immunization with the mitogenic principles involved in desregulation, could stand better chances than strategies of vaccination based on immunopotentiation against othere, functionally neutral antigenic epitopes. It is argued, however, that the complexity of immune responses and their regulation together with our ignorance on the genetic controls of class-determination, offer poor prospects for a scientifically-based, rational development of vaccines in the near future. It is suggested that empirically-based and technologically developed vaccines might suceed, while basic scientific approaches are reinforced and given the time provide a better understanding of those process.
Resumo:
Schistosomiasis control was impossible without effective tools. Synthetic molluscicides developed in the 1950s spearheaded community level control. Snail eradication proved impossible but repeated mollusciciding to manage natural snail populations could eliminate transmission. Escalating costs, logistical complexity, its labour-intensive nature and possible environmental effects caused some concern. The arrival of safe, effective, single-dose drugs in the 1970s offered an apparently better alternative but experience revealed the need for repeated treatments to minimise reinfection in programmes relying on drugs alone. Combining treatment with mollusciciding was more successful, but broke down if mollusciciding was withdrawn to save money. The provision of sanitation and safe water to prevent transmission is too expensive in poor rural areas where schistosomiasis is endemic; rendering ineffective public health education linked to primary health care. In the tropics, moreover, children (the key group in maintaining transmission) will always play in water. Large scale destruction of natural snail habitats remains impossibly expensive (although proper design could render many new man-made habitats unsuitable for snails). Neither biological control agents nor plant molluscicides have proved satisfactory alternatives to synthetic molluscicides. Biologists can develop effective strategies for using synthetic molluscicides in different epidemiological situations if only, like drugs, their price can be reduced.
Resumo:
Field work research on population dynamic of snails from the regions of Belo Horizonte and Lagoa Santa give much information about interactions among two or more species of mollusks: Pomacea haustrum, Biomphalaria glabrata, B. tenagophila, B. straminea and Melanoides tuberculata. Data ranging from two years to several decades ago suggest that the Pampulha reservoir is like a cemetery of B. glabrata and B. straminea, species that coexist for more than 14 years in a small part of a stream, whereas only B. glabrata lives in all the streams of the basin. In the last ten to twenty years B. tenagophila has coexisted with P. haustrum and M. tuberculata in the Serra Verde ponds and in the Pampulha dam. However these species have not settled in any of the brooks, except temporarily. The data suggest that the kind of biotope and the habitat conditions are decisive factors for the permanence of each species in its preferencial biotope. B. glabrata, natural from streams and riverheads, quickly disappears from the reservoirs and ponds where it coexists with other species for a short time, independently of the competitive process. Competition needs to be better studied, since in Central America and Caribean islands this kind of study has favored the biological control of planorbid species.
Resumo:
About one third of the world population is infected with tubercle bacilli, causing eight million new cases of tuberculosis (TB) and three million deaths each year. After years of lack of interest in the disease, World Health Organization recently declared TB a global emergency and it is clear that there is need for more efficient national TB programs and newly defined research priorities. A more complete epidemiology of tuberculosis will lead to a better identification of index cases and to a more efficient treatment of the disease. Recently, new molecular tools became available for the identification of strains of Mycobacterium tuberculosis (M. tuberculosis), allowing a better recognition of transmission routes of defined strains. Both a standardized restriction-fragment-length-polymorphism-based methodology for epidemiological studies on a large scale and deoxyribonucleic acids (DNA) amplification-based methods that allow rapid detection of outbreaks with multidrug-resistant (MDR) strains, often characterized by high mortality rates, have been developed. This review comments on the existing methods of DNA-based recognition of M. tuberculosis strains and their peculiarities. It also summarizes literature data on the application of molecular fingerprinting for detection of outbreaks of M. tuberculosis, for identification of index cases, for study of interaction between TB and infection with the human immunodeficiency virus, for analysis of the behavior of MDR strains, for a better understanding of risk factors for transmission of TB within communities and for population-based studies of TB transmission within and between countries
Resumo:
The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s )? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission) and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection). Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.