19 resultados para Finite volume method
Resumo:
In this paper we present an algorithm for the numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings. Despite the fact that this physical process is usually modelled as a free boundary problem, we adopted the equivalent variational inequality formulation. We propose a two-level iterative algorithm, where the outer iteration is associated to the penalty method, used to transform the variational inequality into a variational equation, and the inner iteration is associated to the conjugate gradient method, used to solve the linear system generated by applying the finite element method to the variational equation. This inner part was implemented using the element by element strategy, which is easily parallelized. We analyse the behavior of two physical parameters and discuss some numerical results. Also, we analyse some results related to the performance of a parallel implementation of the algorithm.
Resumo:
This work presents recent results concerning a design methodology used to estimate the positioning deviation for a gantry (Cartesian) manipulator, related mainly to structural elastic deformation of components during operational conditions. The case-study manipulator is classified as gantry type and its basic dimensions are 1,53m x 0,97m x 1,38m. The dimensions used for the calculation of effective workspace due to end-effector path displacement are: 1m x 0,5m x 0,5m. The manipulator is composed by four basic modules defined as module X, module Y, module Z and terminal arm, where is connected the end-effector. Each module controlled axis performs a linear-parabolic positioning movement. The planning path algorithm has the maximum velocity and the total distance as input parameters for a given task. The acceleration and deceleration times are the same. Denavit-Hartemberg parameterization method is used in the manipulator kinematics model. The gantry manipulator can be modeled as four rigid bodies with three degrees-of-freedom in translational movements, connected as an open kinematics chain. Dynamic analysis were performed considering inertial parameters specification such as component mass, inertia and center of gravity position of each module. These parameters are essential for a correct manipulator dynamic modelling, due to multiple possibilities of motion and manipulation of objects with different masses. The dynamic analysis consists of a mathematical modelling of the static and dynamic interactions among the modules. The computation of the structural deformations uses the finite element method (FEM).
Resumo:
The results of a numerical study of premixed Hydrogen-air flows ignition by an oblique shock wave (OSW) stabilized by a wedge are presented, in situations when initial and boundary conditions are such that transition between the initial OSW and an oblique detonation wave (ODW) is observed. More precisely, the objectives of the paper are: (i) to identify the different possible structures of the transition region that exist between the initial OSW and the resulting ODW and (ii) to evidence the effect on the ODW of an abrupt decrease of the wedge angle in such a way that the final part of the wedge surface becomes parallel to the initial flow. For such a geometrical configuration and for the initial and boundary conditions considered, the overdriven detonation supported by the initial wedge angle is found to relax towards a Chapman-Jouguet detonation in the region where the wedge surface is parallel to the initial flow. Computations are performed using an adaptive, unstructured grid, finite volume computer code previously developed for the sake of the computations of high speed, compressible flows of reactive gas mixtures. Physico-chemical properties are functions of the local mixture composition, temperature and pressure, and they are computed using the CHEMKIN-II subroutines.
Resumo:
The relationship of NaCl with problems of arterial hypertension has led to a reduction in the levels of this salt in food production. KCl has been used as a partial substitute for NaCl since it cannot be completely substituted without affecting the acceptability of the end product. In this study, the diffusion that occurs during quail egg salting in static and stirred brine was simulated. The mathematical model used was based on a generalization of the Fick's 2nd law, and the COMSOL Multiphysics software was used to simulate the diffusion in the NaCl-KCl-water system. The deviations in the simulated data and experimental data were 2.50% for NaCl and 6.98% for KCl in static brine, while in the stirred brine they were 3.48% for NaCl and 4.72% for KCl. The simulation results presented good agreement with the experimental values and validated the predictive capacity of the model.