65 resultados para FOLATE METABOLISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future of antimalarial chemotherapy is particulary alarming in view of the spread of parasite cross-resistances to drugs that are not even structurally related. Only the availability of new pharmacological models will make it possible to select molecules with novel mechanisms of action, thus delaving resistance and allowing the development of new chemotherapeutic strategies. We reached this objective in mice. Our approach is hunged on fundamental and applied research begun in 1980 to investigate to phospholipid (PL) metabolism of intraerythrocytic Plasmodium. This metabolism is abundant, specific and indispensable for the production of Plasmodium membranes. Any drug to interfere with this metabolism blocks parasitic development. The most effective interference yet found involves blockage of the choline transporter, which supplies Plasmodium with choline for the synthesis of phosphatidylcholine, its major PL, this is a limiting step in the pathway. The drug sensitivity thereshold is much lower for the parasite, which is more dependent on this metabolism than host cells. The compounds show in vitro activity against P. falciparum at 1 to 10 nM. They show a very low toxicity against a lymphblastoid cell line, demonstrating a total abscence of correlation between growth inhibition of parasites and lymphoblastoid cells. They show antimalarial activity in vivo, in the P. berghei or P. chabaudi/mouse system, at doses 20-to 100-fold lower than their in acute toxicity limit. The bioavailability of a radiolabeled form of the product seemed to be advantageous (slow blood clearance and no significant concentration in tissues). Lastly, the compounds are inexpensive to produce. They are stable and water-soluble.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes) as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50) against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain). This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50)/ED50) but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous) administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a model for designing antimalarial drugs based on interference with an essential metabolism developed by Plasmodium during its intraerythrocytic cycle, phospholipid (PL) metabolism. The most promising drug interference is choline transporter blockage, which provides Plasmodium with a supply of precursor for synthesis of phosphatidylcholine (PC), the major PL of infected erythrocytes. Choline entry is a limiting step in this metabolic pathway and occurs by a facilitated-diffusion system involving an asymmetric carrier operating according to a cyclic model. Choline transport in the erythrocytes is not sodium dependent nor stereospecific as demonstrated using stereoisomers of alpha and beta methylcholine. These last two characteristics along with distinct effects of nitrogen substitution on transport rate demonstrate that choline transport in the infected erythrocyte possesses characteristics quite distinct from that of the nervous system. This indicates a possible discrimination between the antimalarial activity (inhibition of choline transport in the infected erythrocyte) and a possible toxic effect through inhibition of choline entry in synaptosomes. Apart from the de novo pathway of choline, PC can be synthesized by N-methylation from phosphatidylethanolamine (PE). There is a de novo pathway for PE biosynthesis from ethanolamine in infected cells but phosphatidylserine (PS) decarboxylation also occurs. In addition, PE can be directly and abundantly synthesized from serine decarboxylation into ethanolamine, a pathway which is absent from the host. The variety of the pathways that exist for the biosynthesis of one given PL led us to investigate whether an equilibrium can occur between all PL metabolic pathways. Indeed, if alternative (compensative) pathway(s) can operate after blockage of the de novo PC biosynthesis pathway this would indicate a potential mechanism for resistance acquisition. Up until now, there is no evidence of such a compensative process occurring in Plasmodium-infected erythrocytes under physiological conditions. Besides, the discovery of a highly parasite-specific pathway (serine decarboxylation and the presence of PS synthase) constitutes a very attractive and promising target, which could be attacked if resistances are built up against choline analogs. Indeed, potential inhibitions of the serine decarboxylase pathway could be very useful in acting instead of, or in surgery with, choline analogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the Schistosoma mansoni genome, one of the etiologic agents of human schistosomiasis, is essential for a better understanding of the biology and development of this parasite. In order to get an overview of all S. mansoni catalogued gene sequences, we performed a clustering analysis of the parasite mRNA sequences available in public databases. This was made using softwares PHRAP and CAP3. The consensus sequences, generated after the alignment of cluster constituent sequences, allowed the identification by database homology searches of the most expressed genes in the worm. We analyzed these genes and looked for a correlation between their high expression and parasite metabolism and biology. We observed that the majority of these genes is related to the maintenance of basic cell functions, encoding genes whose products are related to the cytoskeleton, intracellular transport and energy metabolism. Evidences are presented here that genes for aerobic energy metabolism are expressed in all the developmental stages analyzed. Some of the most expressed genes could not be identified by homology searches and may have some specific functions in the parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001). High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host lipids have been implicated in the pathogenesis of Toxoplasma gondiiinfection. To determine if Toxoplasmainfection influences the lipid status in the normal host, we assessed serum lipids of Swiss-Webster mice during infection with the BGD-1 strain (type-2) at a series of time points. Mice were bled at days zero and 42 post-infection, and subgroups were additionally bled on alternating weeks (model 1), or sacrificed at days zero, 14 and 42 (model 2) for the measurement of total cholesterol (Chl), high density lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides and adiponectin. At day 42, brains were harvested for cyst enumeration. A significant decrease (p = 0.02) in HDL and total Chl was first noted in infected vs. control mice at day 14 and persisted to day 42 (p = 0.013). Conversely, LDL was unaltered until day 42, when it increased (p = 0.043). Serum LDL levels at day 42 correlated only with cyst counts of above 300 (found in 44% mice), while the change in HDL between days zero and 42 correlated with both the overall mean cyst count (p = 0.041) and cyst counts above 300 (p = 0.044). Calculated per cyst, this decrease in HDL in individual animals ranged from 0.1-17 µmol/L, with a mean of 2.43 ± 4.14 µmol/L. Serum adiponectin levels remained similar between infected and control mice throughout the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the alterations in the glycogen content of tissues (digestive gland and cephalopedal mass) and glucose in the haemolymph of Biomphalaria glabrata BH strain infected with Schistosoma mansoni BH strain and exposed to the latex of Euphorbia splendens var. hislopii. A reduction in the glycogen deposits was observed in infected snails exposed and not exposed to latex. However, the exposure to latex caused a greater depletion of the glycogen levels in both sites analysed, especially from the third week onward. The utilisation of latex as a molluscicide to control the population of infected B. glabrata selectively is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin (IL)-15 is a pleiotropic cytokine that regulates the proliferation and survival of many cell types. IL-15 is produced by monocytes and macrophages against infectious agents and plays a pivotal role in innate and adaptive immune responses. This study analyzed the effect of IL-15 on fungicidal activity, oxidative metabolism and cytokine production by human monocytes challenged in vitro with Paracoccidioides brasiliensis (Pb18), the agent of paracoccidioidomycosis. Peripheral blood monocytes were pre-incubated with IL-15 and then challenged with Pb18. Fungicidal activity was assessed by viable fungi recovery from cultures after plating on brain-heart infusion-agar. Superoxide anion (O2-), hydrogen peroxide (H2O2), tumour necrosis factor-alpha (TNF-α), IL-6, IL-15 and IL-10 production by monocytes were also determined. IL-15 enhanced fungicidal activity against Pb18 in a dose-dependent pattern. This effect was abrogated by addition of anti-IL-15 monoclonal antibody. A significant stimulatory effect of IL-15 on O2- and H2O2 release suggests that fungicidal activity was dependent on the activation of oxidative metabolism. Pre-treatment of monocytes with IL-15 induced significantly higher levels of TNF-α, IL-10 and IL-15 production by cells challenged with the fungus. These results suggest a modulatory effect of IL-15 on pro and anti-inflammatory cytokine production, oxidative metabolism and fungicidal activity of monocytes during Pb18 infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae) in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE), alpha (EST-α) and beta (EST-β) esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control), aminoethoxyvinylglycine (AVG), AVG + ethephon, AVG + naphthaleneacetic acid (NAA), ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS), AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of inclusion of dietary glycerol in replacement to starch on the growth and energy metabolism of Nile tilapia juveniles. The experiment was carried out in a completely randomized design with four treatments (0, 5, 10, and 15% purified glycerol) and six replicates. Pelleted, isonitrogenous, and isocaloric diets were provided for 60 days. Growth performance parameters and muscle glucose and protein concentrations were not affected by dietary glycerol levels. The treatment with 15% glycerol presented higher levels of muscle and liver triglycerides. A quadratic effect of treatments on muscle and liver triglyceride concentrations was observed. The treatment with 0% glycerol presented higher hepatic glucose levels than the one with 15%. Treatments did not differ for concentrations of liver protein, as well as of plasma glucose, triglycerides, and protein. Treatments with 10 and 15% glycerol showed higher activity of the glucose-6-phosphate-dehydrogenase enzyme than the treatment with 5%; however, there were no significant differences in the hepatic activities of the malic and glycerol kinase enzymes. A linear positive effect of treatments was observed on the activity of the glycerol kinase enzyme in liver. Levels of glycerol inclusion above 10% in the diet of Nile tilapia juveniles characterize it as a lipogenic nutrient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The weaning period of piglets is characterized by physiological alterations, such as decreased weight gain, increased reactive oxygen species (ROS) and increased serum cortisol levels with possible effects on the immune response. The effect of parenteral administration of vitamins A, D and E on production performance, oxidative metabolism, and the function of polymorphonuclear leukocytes (PMNLs) was assessed in piglets during the weaning period. The sample was comprised of 20 male piglets that were given an injectable ADE vitamin combination (135,000 IU vitamin A, 40,000 IU vitamin D and 40mg vitamin E/ animal) at 20 and 40 days of age. Weight gain, concentration of reduced glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) and the microbicidal and phagocytic activity of PMNLs were assessed. No difference was observed in the average piglet weight during the study; however, a greater percentage of weight gain was observed after weaning in the treated group. The concentrations of GSH and SOD did not differ between groups, although lipid peroxidation was greater in the control group at 60 days of age. The investigated variables of oxidative metabolism were correlated as follows: -0.41 for GSH and MDA, -0.54 for GSH and SOD and 0.34 for MDA and SOD. The intensity of intracellular ROS production, the percentage of ROS-producing PMNLs and the intensity of phagocytosis by PMNLs did not differ between treatment groups. Administration of the injectable ADE combination improved the percentage of weight gain between 20 and 40 days of age, decreased oxidative stress at 60 days of age and did not influence the function of PMNLs in piglets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were designed to study in-vivo effects of sodium cyanide on biochemical endpoints in the freshwater fish Labeo rohita. Fish were exposed to two sublethal concentrations (0.106 and 0.064mg/L) for a period of 15 days. Levels of glycogen, pyruvate, lactate and the enzymatic activities of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PDH), phosphorylase, alkaline phosphatase (ALP), acid phosphatase (AcP) were assessed in different tissues (liver, muscle and gills). Result indicated a steady decrease in glycogen, pyruvate, SDH, ALP and AcP activity with a concomitant increase in the lactate, phosphorylase, LDH and G6PD activity in all selected tissues. The alterations in all the above biochemical parameters were significantly (p<0.05) time and dose dependent. In all the above parameters, liver pointing out the intensity of cyanide intoxication compare to muscle and gills. Study revealed change in the metabolic energy by means of altered metabolic profile of the fish. Further, these observations indicated that even sublethal concentrations of sodium cyanide might not be fully devoid of deleterious influence on metabolism in L. rohita.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horses used for the game of polo experience abrupt and frequent changes in exercise intensity. To meet this variable energy demand, the horses use both aerobic and anaerobic pathways in varying proportions and intensities. In this context, there must be a balance between the formation of reactive oxygen species (ROS) and the action of antioxidants to prevent oxidative stress and its consequences. The effect of supplementation with an ADE vitamin complex on oxidative metabolism was evaluated in 18 crossbred horses randomly divided between a treated group (TG) and a control group (CG). The TG animals received the ADE vitamin complex (1mL/50 kg of body weight) by deep intramuscular injection at 30 and 15 days before the game. The CG horses received 10ml of saline by the same administration route and schedule. During the polo match, the animals played for a total of 7.5 min. Blood samples were collected on the same days as the treatments were administered, and immediately before and at 15, 90 and 180 minutes after the game. The concentrations of creatine phosphokinase (CK), lactate dehydrogenase (LDH), lactate, glucose, aspartate aminotransferase (AST), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured in the blood samples. After the game, the TG demonstrated higher levels of AST, lactate and glucose than the CG, suggesting more efficient energy use by the treated animals. The higher GSH and lower lactate levels in the TG before the game suggest the presence of a greater antioxidant supply in the treated animals. The maintenance of the MDA levels indicates that neither of the groups exhibited oxidative stress.