29 resultados para Extruded
Resumo:
The study evaluated the efficiency of chemical (phosphorylation) and physical (extrusion) modifications of the starch of broken rice. Results demonstrated a reduction in the moisture content of extruded and phosphorylated broken rice and an increase in the ash content of phosphorylated broken rice. Both phosphorylation and extrusion increased cold water binding capacity, swelling power, and solubility. Extruded and phosphorylated pastes were stable under refrigeration, but only extruded paste was stable when submitted to freezing. Phosphorylated paste had the lowest viscosity and the highest stability during heating, while the extruded one gelatinized without heating, but had higher losses during heating.
Resumo:
The volatile compounds of raw and extruded bovine rumen, extracted by dynamic headspace, were separated by gas chromatography and analyzed by GC-MS. Raw and extruded materials presented thirty-two volatile compounds. The following compounds were identified in raw bovine rumen: heptane, 1-heptene, 4-methyl-2-pentanone, toluene, hexanal, ethyl butyrate, o-xylene, m-xylene, p-xylene, heptanal, limonene, nonanal, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane and octadecane. The following compounds were identified in the extruded material: 1-heptene, 2,4-dimethylhexane, toluene, limonene, undecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane and nonadecane. Mass spectra of some unidentified compounds indicated the presence of hydrocarbons with branched chains or cyclic structure.
Resumo:
Variations in egg length were observed for two populations of cryptic species of Anastrepha fraterculus (Wiedemann). The eggs of type I flies were smaller than those of type II individuals. For both types, in regard to yolk mass extrusion, four classes of embryos were detected. Class 1: embryos that extrude masses at both extremities; class 2: embryos in which extrusion occurs only at the anterior pole; class 3: embryos that eliminate mass only at the posterior pole, and class 4: embryos that do not extrude any mass. Embryo class frequencies were similar for populations belonging to the same type, but different between types. Individual females may produce eggs from different embryo classes, but for any given female the pattern remains constant during a long period of oviposition. Variation in size of the extruded masses was similar for both populations. Individual females produced embryos with a small range of mass diameters, and different females produced masses of different mean size. However, individual mass size remained constant during oviposition. The results suggest the existence of genetic components involved in the control of this unusual process. Larvae of both types presented, just before eclosion, similar unusual behaviors: they ingest the anterior extruded mass, rotate 180°, absorb the posterior mass and eclose near the posterior pole. Data show that cryptic A. fraterculus type I and type II differs in regard to egg size as well as to the phenomenon of yolk mass extrusion
Resumo:
Partially hydrogenated vegetable oil has been used in snack flavoring for its ability to entrap hydrophobic aroma compounds. However, increasing concerns about the health risks of saturated and trans fatty acids (TFA) consumption led to the development of alternative agents for this use. We studied the use of rapeseed oil (O) as a replacement for partially hydrogenated vegetable oil (F) in snack flavoring. Products with several different rapeseed oil contents were designed, packed, and then stored for twenty weeks at room temperature. Fatty acids compositions, TBA reactive substances (TBARS), shear strength and sensory acceptability were assessed throughout storage time. Total replacement reduced saturated fat by 72.5% in relation to market available snacks. TFA were initially absent in these products, but their production occurred spontaneously on the 8th week with gradual increase during storage up to levels still lower than those observed in commercially available snacks. Low TBARS levels and stability of shear strength during the twenty-week of storage were also observed. Snacks flavored with F or O were equally well accepted during the storage period. It is feasible to develop a storage stable snack with reduced saturated and trans fatty acid contents while maintaining the high sensory acceptability typical of this food product.
Resumo:
The effects of sucrose and water contents on cassava flour processed by extrusion at varied concentrations of sucrose (0-20% w/w) and water (28-42% w/w) were studied by applying response surface methodology. The extrusion of the mixtures was performed in a twin screw extruder fitted to a torque rheometer. The specific mechanical energy (SME) dissipated inside a conical twin-screw extruder was measured. Water absorption index (WAI), water solubility index (WSI) and paste viscosity readings (cold viscosity (CV), peak viscosity (PV), breakdown (BD) and set back (SB)) during a gelatinization-retrogradation cycle measured in a Rapid Visco Analyzer were determined on non-directly extruded products. The results indicated that SME and WSI decreased as a function of water and sucrose contents. WAI and pasting properties were influenced by water content. A non antiplasticizing effect of the sucrose content was observed on pasting properties, suggesting that sucrose did not reduce the availability of water available for gelatinizing cassava flour during the extrusion process. The nature of the optimum point was characterized as a saddle point for WAI, WSI, PV and BD, whereas SME showed a maximum and CV and SB a minimum. The results indicated to be valuable for the production of non-expanded cassava flour extrudates with desirable functional properties for specific end users.
Resumo:
We evaluated the effects of defatted amaranth (Amaranthus caudatus L.) snacks on plasma lipids in moderate hypercholesterolemic patients. Twenty-two subjects [30-65 years old), 11 males, with total cholesterol (TC) > 240 mg.dL-1, low-density cholesterol (LDL-c) 160-190 mg.dL-1 and plasma triglycerides (TG) < 400 mg.dL-1] were randomized in a double blind clinical trial to receive an amaranth snack (50 g/day) or equivalent corn snack (placebo) for 2 months. There were no differences between amaranth and placebo on TC and LDL-c, and TG respectively: -8.4 and -5.7% (p = 0.17); -12.3 and -9.7% (p = 0.41) and -0.6 and -7.3% (p = 0.47). However, amaranth snacks significantly reduced high-density cholesterol (HDL-c): -15.2 vs. -4% (p = 0.03). In conclusion, the intake of 50 g of extruded amaranth daily during 60 days did not significantly reduce LDL-c in moderate hypercholesterolemic subjects; furthermore there was a significant reduction in HDL-c. Studies with greater number of subjects and greater quantity of this food are necessary to test the effects of amaranth on lipid metabolism in humans.
Resumo:
The aim of this experiment was to evaluate how susceptible spores become to mechanical damage during food extrusion after being submitted to CO2. B. stearothermophilus spores sowed to corn and soy mix were submitted to 99% CO2 for 10 days and extruded in a single-screw extruder. The treatments were: T1 - spore-containing samples, extruded at screw rotational speed of 65 rpm and barrel wall temperature of 80 °C; T2 - as T1, except for screw rotational speed of 150 rpm; and T3 - as T2, except that samples were submitted to the modified atmosphere. The results for cell viability, minimum and maximum residence times, and static pressure were T1 - 19.90 ± 3.24%, 123.3 ± 14.50 seconds; 203.3 ± 14.05 seconds; 2.217 ± 62 kPa; T2 - 21.42 ± 8.24%, 70.00 ± 5.77 seconds; 170.00 ± 4.67 seconds; 2.310 ± 107 kPa; and T3 - 11.06 ± 2.46%, 86.00 ± 7.23 seconds; 186.00 ± 7.50 seconds; 2.403 ± 93 kPa, respectively. It was concluded that the extrusion process did reduce the cell count. However, screw rotational speed variation or CO2 pre-treatment did not affect cell viability.
Resumo:
The demand for low-fat beef products has led the food industry to use fat substitutes such as modified starch. About 14% of broken rice is generated during processing. Nevertheless, this by-product contains high levels of starch; being therefore, great raw material for fat substitution. This study evaluated the applicability of chemically and physically modified broken rice starch as fat substitute in sausages. Extruded and phosphorylated broken rice was used in low-fat sausage formulation. All low-fat sausages presented about 55% reduction in the fat content and around 28% reduction in the total caloric value. Fat replacement with phosphorylated and extruded broken rice starch increased the texture acceptability of low-fat sausages, when compared to low-fat sausages with no modified broken rice. Results suggest that modified broken rice can be used as fat substitute in sausage formulations, yielding lower caloric value products with acceptable sensory characteristics.
Resumo:
A blend of 50% Potato Starch (PS), 35% Quality Protein Maize (QPM), and 15% Soybean Meal (SM) were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT) (75-140 °C) and Feed Moisture (FM) (16-30%). The effect of extrusion variables was investigated in terms of Expansion Index (EI), apparent density (ApD), Penetration Force (PF) and Specific Mechanical Energy (SME), viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM). The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM). SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.
Resumo:
Although Brazil is a country of tradition in both the production and consumption of coffee, the most of the coffee is consumed as a beverage, which reduces greatly the competitiveness on international market, for reducing the chances of supplying the product under other forms of consumption. Owing to that, the aim of this study was developing a precooked mixed flour containing coffee powder and rice for use in coffee flavored products. Mixtures of rice and coffee in the proportions of 900:100, 850:150 and 800:200 g, respectively, were processed in a single screw extruder (Brabender DS-20, Duisburg, German) and the effect of the extrusion process on the variables moisture content (16%, 18% and 20%) and temperature in the third extruding zone (140 °C, 160 °C and 180 °C) was studied. The results for expansion index ranged from 2.91 to 11.11 mm in diameter; the water absorption index from 4.59 to 6.33 g gel/g sample and the water solubility index varied from 4.05% to 8.57%. These results showed that, despite coffee powder influenced the variables studied, the expanded product after milling resulted in a extruded mixture with good absorption and water solubility indices, which favors the use of the precooked mixed flour for human consumption.
Resumo:
This study aimed to define the process conditions to obtain snacks from the by-products of rice and soybean with physical characteristics suitable for marketing. Therefore, the effects of moisture and extrusion temperature on the expansion and color of the products obtained experimentally obtained were evaluated, and the proximate composition of the by-products and that of the snack with greater desirability were determined. Response surface methodology and rotational central composite design were used, and desirability test based on the regression models adjusted was applied. The most desirable snack, with the highest expansion index (3.39), specific volume (13.5 mL.g-1), and the chromaticity coordinate a* (2.79), was obtained under 12 g.100 g-1 moisture and 85ºC of temperature in the third zone of the extruder. The snack produced under these conditions attained content of protein and lipid content 41 and 64% higher than that of the traditional corn snack. It can be concluded that producing extruded snack made form a mixture of broken grains, rice bran, and soybean okara (81:9:10) is technologically feasible, enabling the development of a new product with good nutritional value that can improve the diet of children, the main consumers of this type of food.
Resumo:
Starch derivatives of taro (Colocasia esculenta L. Schott) and rice were characterized as wall materials of orange oil (d-limonene) by spray drying. Native starches were initially hydrolyzed with HCl and then esterified. Succinylated starches were modified using a conventional method in a slurry and were extruded; whereas, the phosphorylated starches were modified using the extrusion process. Viscosity and solubility of starches reduced after acid hydrolysis, derivatization, and extrusion. The particle size of the wall materials ranged between 20.05 and 31.81 µm. The encapsulation efficiency of the phosphorylated taro, rice, and waxy corn starches was 96.9, 96.8 and 97.1% respectively, and 98.6, 98.1, and 98.8% for succynilated taro, rice, and waxy corn starches, respectively. Starch derivatives of taro and rice could potentially be used as wall materials of orange oil d-limonene.
Resumo:
A cassava-based puffed snack was produced using a single screw extruder to determine the effect of the raw material composition (cassava leaf flour and moisture) and the process parameters (extrusion temperature and screw speed) on the physical characteristics of an extruded-expanded snack. A central composite rotational design, including four factors with 30 treatments, was used with the following as dependent variables: expansion index, specific volume, water solubility index, water absorption index, color (L*, a*, b*), and hardness. Under conditions of low moisture content (12 to 14%), low percentage of cassava leaf flour (2 to 4%), and intermediate conditions of extrusion temperature (100°C) and screw speed (230rpm), it was possible to obtain puffed snack products with desirable characteristics.
Resumo:
Abstract Millets are having superior nutritional qualities and health benefits; hence they can be used for supplementation of pasta. Pasta was prepared using composite flour (CF) of durum wheat semolina (96%) and carrot pomace (4%) supplemented with finger millet flour (FMF, 0-20g), pearl millet flour (PMF, 0-30g) and carboxy methyl cellulose (CMC, 2-4g). Second order polynomial described the effect of FMF, PMF and CMC on lightness, firmness, gruel loss and overall acceptability of extruded pasta products. Results indicate that an increasing proportion of finger and pearl millet flour had signed (p≤0.05) negative effect on lightness, firmness, gruel loss and overall acceptability. However, CMC addition showed significant (p≤0. 05) positive effect on firmness, overall acceptability and negative effect on gruel loss of cooked pasta samples. Numeric optimization results showed that optimum values for extruded pasta were 20g FMF, 12g PMF and 4g CMC per 100g of CF and 34ml water with 0.981 desirability. The pasta developed is nutritionally rich as it contains protein (10.16g), fat (6g), dietary fiber (16.71g), calcium (4.23mg), iron (3.99mg) and zinc (1.682mg) per 100g.