17 resultados para Extended X ray absorption fine structures (EXAFS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray test is a precise, fast and non-destructive method to detect mechanical damage in seeds. In the present study, the efficiency of X-ray analysis in identifying the extent of mechanical damage in sweet corn seeds and its relationship with germination and vigor was evaluated. Hybrid 'SWB 551' (sh2) seeds with round (R) and flat (F) shapes were classified as large (L), medium (M1, M2 and M3) and small (S), using sieves with round and oblong screens. After artificial exposure to different levels of damage (0, 1, 3, 5 and 7 impacts), seeds were X-rayed (15 kV, 5 min) and submitted to germination (25 °C/5 days) and cold (10 °C/7 days) tests. Digital images of normal and abnormal seedlings and ungerminated seeds from germination and cold tests were jointly analyzed with the seed X-ray images. Results showed that damage affecting the embryonic axis resulted in abnormal seedlings or dead seeds in the germination and cold tests. The X-ray analysis is efficient for identifying mechanical damage in sweet corn seeds, allowing damage severity to be associated with losses in germination and vigor.