47 resultados para Explicit method, Mean square stability, Stochastic orthogonal Runge-Kutta, Chebyshev method
Resumo:
Background:Diabetes affects approximately 250 million people in the world. Cardiovascular autonomic neuropathy is a common complication of diabetes that leads to severe postural hypotension, exercise intolerance, and increased incidence of silent myocardial infarction.Objective:To determine the variability of heart rate (HR) and systolic blood pressure (SBP) in recently diagnosed diabetic patients.Methods:The study included 30 patients with a diagnosis of type 2 diabetes of less than 2 years and 30 healthy controls. We used a Finapres® device to measure during five minutes beat-to-beat HR and blood pressure in three experimental conditions: supine position, standing position, and rhythmic breathing at 0.1 Hz. The results were analyzed in the time and frequency domains.Results:In the HR analysis, statistically significant differences were found in the time domain, specifically on short-term values such as standard deviation of NN intervals (SDNN), root mean square of successive differences (RMSSD), and number of pairs of successive NNs that differ by more than 50 ms (pNN50). In the BP analysis, there were no significant differences, but there was a sympathetic dominance in all three conditions. The baroreflex sensitivity (BRS) decreased in patients with early diabetes compared with healthy subjects during the standing maneuver.Conclusions:There is a decrease in HR variability in patients with early type 2 diabetes. No changes were observed in the BP analysis in the supine position, but there were changes in BRS with the standing maneuver, probably due to sympathetic hyperactivity.
Resumo:
ABSTRACT Quantitative evaluations of species distributional congruence allow evaluating previously proposed biogeographic regionalization and even identify undetected areas of endemism. The geographic scenery of Northwestern Argentina offers ideal conditions for the study of distributional patterns of species since the boundaries of a diverse group of biomes converge in a relatively small region, which also includes a diverse fauna of mammals. In this paper we applied a grid-based explicit method in order to recognize Patterns of Distributional Congruence (PDCs) and Areas of Endemism (AEs), and the species (native but non-endemic and endemic, respectively) that determine them. Also, we relate these distributional patterns to traditional biogeographic divisions of the study region and with a very recent phytogeographic study and we reconsider what previously rejected as 'spurious' areas. Finally, we assessed the generality of the patterns found. The analysis resulted in 165 consensus areas, characterized by seven species of marsupials, 28 species of bats, and 63 species of rodents, which represents a large percentage of the total species (10, 41, and 73, respectively). Twenty-five percent of the species that characterize consensus areas are endemic to the study region and define six AEs in strict sense while 12 PDCs are mainly defined by widely distributed species. While detailed quantitative analyses of plant species distribution data made by other authors does not result in units that correspond to Cabrera's phytogeographic divisions at this spatial scale, analyses of animal species distribution data does. We were able to identify previously unknown meaningful faunal patterns and more accurately define those already identified. We identify PDCs and AEs that conform Eastern Andean Slopes Patterns, Western High Andes Patterns, and Merged Eastern and Western Andean Slopes Patterns, some of which are re-interpreted at the light of known patterns of the endemic vascular flora. Endemism do not declines towards the south, but do declines towards the west of the study region. Peaks of endemism are found in the eastern Andean slopes in Jujuy and Tucumán/Catamarca, and in the western Andean biomes in Tucumán/Catamarca. The principal habitat types for endemic small mammal species are the eastern humid Andean slopes. Notwithstanding, arid/semi-arid biomes and humid landscapes are represented by the same number of AEs. Rodent species define 15 of the 18 General Patterns, and only in one they have no participation at all. Clearly, at this spatial scale, non-flying mammals, particularly rodents, are biogeographically more valuable species than flying mammals (bat species).
Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data
Resumo:
In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.
Resumo:
Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i) to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii) to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO), short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginópolis (VG), these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29) despite the opposite result obtained with the statistical procedure to test the identity of analytical methods. Only for lower soil C stocks, the model over-estimated the C stock in the 0-20 cm layer. Thus, the Century model is highly promising to detect changes in C stocks in distinct soil orders under eucalyptus, as well as to indicate the impact of harvest residue management on SOM in future rotations.
Resumo:
Pedotransfer functions (PTF) were developed to estimate the parameters (α, n, θr and θs) of the van Genuchten model (1980) to describe soil water retention curves. The data came from various sources, mainly from studies conducted by universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation (Embrapa) and by a corporation for the development of the São Francisco and Parnaíba river basins (Codevasf), totaling 786 retention curves, which were divided into two data sets: 85 % for the development of PTFs, and 15 % for testing and validation, considered independent data. Aside from the development of general PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols, Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise procedure (forward and backward) to select the best predictors. Two types of PTFs were developed: the first included all predictors (soil density, proportions of sand, silt, clay, and organic matter), and the second only the proportions of sand, silt and clay. The evaluation of adequacy of the PTFs was based on the correlation coefficient (R) and Willmott index (d). To evaluate the PTF for the moisture content at specific pressure heads, we used the root mean square error (RMSE). The PTF-predicted retention curve is relatively poor, except for the residual water content. The inclusion of organic matter as a PTF predictor improved the prediction of parameter a of van Genuchten. The performance of soil-class-specific PTFs was not better than of the general PTF. Except for the water content of saturated soil estimated by particle size distribution, the tested models for water content prediction at specific pressure heads proved satisfactory. Predictions of water content at pressure heads more negative than -0.6 m, using a PTF considering particle size distribution, are only slightly lower than those obtained by PTFs including bulk density and organic matter content.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.
Resumo:
The objective of this study was to adapt a nonlinear model (Wang and Engel - WE) for simulating the phenology of maize (Zea mays L.), and to evaluate this model and a linear one (thermal time), in order to predict developmental stages of a field-grown maize variety. A field experiment, during 2005/2006 and 2006/2007 was conducted in Santa Maria, RS, Brazil, in two growing seasons, with seven sowing dates each. Dates of emergence, silking, and physiological maturity of the maize variety BRS Missões were recorded in six replications in each sowing date. Data collected in 2005/2006 growing season were used to estimate the coefficients of the two models, and data collected in the 2006/2007 growing season were used as independent data set for model evaluations. The nonlinear WE model accurately predicted the date of silking and physiological maturity, and had a lower root mean square error (RMSE) than the linear (thermal time) model. The overall RMSE for silking and physiological maturity was 2.7 and 4.8 days with WE model, and 5.6 and 8.3 days with thermal time model, respectively.
Resumo:
The objective of this study was to improve the simulation of node number in soybean cultivars with determinate stem habits. A nonlinear model considering two approaches to input daily air temperature data (daily mean temperature and daily minimum/maximum air temperatures) was used. The node number on the main stem data of ten soybean cultivars was collected in a three-year field experiment (from 2004/2005 to 2006/2007) at Santa Maria, RS, Brazil. Node number was simulated using the Soydev model, which has a nonlinear temperature response function [f(T)]. The f(T) was calculated using two methods: using daily mean air temperature calculated as the arithmetic average among daily minimum and maximum air temperatures (Soydev tmean); and calculating an f(T) using minimum air temperature and other using maximum air temperature and then averaging the two f(T)s (Soydev tmm). Root mean square error (RMSE) and deviations (simulated minus observed) were used as statistics to evaluate the performance of the two versions of Soydev. Simulations of node number in soybean were better with the Soydev tmm version, with a 0.5 to 1.4 node RMSE. Node number can be simulated for several soybean cultivars using only one set of model coefficients, with a 0.8 to 2.4 node RMSE.
Resumo:
The objective of this work was to parameterize, calibrate, and validate a new version of the soybean growth and yield model developed by Sinclair, under natural field conditions in northeastern Amazon. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, PA, Brazil, from 2006 to 2009. The climatic conditions during the experiment were very distinct, with a slight reduction in rainfall in 2007, due to the El Niño phenomenon. There was a reduction in the leaf area index (LAI) and in biomass production during this year, which was reproduced by the model. The simulation of the LAI had root mean square error (RMSE) of 0.55 to 0.82 m² m-2, from 2006 to 2009. The simulation of soybean yield for independent data showed a RMSE of 198 kg ha-1, i.e., an overestimation of 3%. The model was calibrated and validated for Amazonian climatic conditions, and can contribute positively to the improvement of the simulations of the impacts of land use change in the Amazon region. The modified version of the Sinclair model is able to adequately simulate leaf area formation, total biomass, and soybean yield, under northeastern Amazon climatic conditions.
Resumo:
The objective of this work was to accomplish the simultaneous determination of some chemical elements by Energy Dispersive X-ray Fluorescence (EDXRF) Spectroscopy through multivariate calibration in several sample types. The multivariate calibration models were: Back Propagation neural network, Levemberg-Marquardt neural network and Radial Basis Function neural network, fuzzy modeling and Partial Least Squares Regression. The samples were soil standards, plant standards, and mixtures of lead and sulfur salts diluted in silica. The smallest Root Mean Square errors (RMS) were obtained with Back Propagation neural networks, which solved main EDXRF problems in a better way.
Resumo:
The structure and hydration of the HNP-3 have been derived from molecular dynamics data using root mean square deviation, radial and energy distributions. Three antiparallel beta sheets were found to be preserved. 15 intramolecular hydrogen bonds were identified together with 36 hydrogen bonds on the backbone and 35 on the side chain atoms. From the point of view of the hydration dynamics, the analysis shows a high solvent accessibility of the monomer and attractive interactions with water molecules.
Resumo:
The moisture sorption isotherms of Chilean papaya were determined at 5, 20, and 45 ºC, over a relative humidity range of 10-95%. The GAB, BET, Oswin, Halsey, Henderson, Smith, Caurie and Iglesias-Chirife models were applied to the sorption experimental data. The goodness of fit of the mathematical models was statistically evaluated by means of the determination coefficient, mean relative percentage deviation, sum square error, root-mean-square error, and chi-square values. The GAB, Oswin and Halsey models were found to be the most suitable for the description of the sorption data. The sorption heats calculated using the Clausius-Clapeyron equation were 57.35 and 59.98 kJ·mol-1, for adsorption and desorption isotherms, respectively.
Resumo:
Ten common doubts of chemistry students and professionals about their statistical applications are discussed. The use of the N-1 denominator instead of N is described for the standard deviation. The statistical meaning of the denominators of the root mean square error of calibration (RMSEC) and root mean square error of validation (RMSEV) are given for researchers using multivariate calibration methods. The reason why scientists and engineers use the average instead of the median is explained. Several problematic aspects about regression and correlation are treated. The popular use of triplicate experiments in teaching and research laboratories is seen to have its origin in statistical confidence intervals. Nonparametric statistics and bootstrapping methods round out the discussion.
Resumo:
Mid-infrared spectroscopy and chemometrics were used to identify adulteration in roasted and ground coffee by addition of coffee husks. Consumers' sensory perception of the adulteration was evaluated by a triangular test of the coffee beverages. Samples containing above 0.5% of coffee husks from pure coffees were discriminated by principal component analysis of the infrared spectra. A partial least-squares regression estimated the husk content in samples and presented a root-mean-square error for prediction of 2.0%. The triangular test indicated that were than 10% of coffee husks are required to cause alterations in consumer perception about adulterated beverages.
Resumo:
The high seedlings quality is essential for deployment of homogeneous orchards. This study evaluated the baruzeiro (Dipteryx alata Vog) seedlings formation on different substrates within protected environments. It was used substrates with100% of cattle manure; 100% of cassava stems; 100% of vermiculite; 50% of cattle manure + 50% of cassava stems; 50% of cattle manure + 50% of vermiculite; 50% of cassava stems + 50% of vermiculite; and + ⅓ of cattle manure + ⅓ of cassava stems + ⅓ of vermiculite. These substrates were tested in protected areas: greenhouse; black shade net of 50% shading; and aluminized thermo-reflective screen of 50% shading. A completely randomized experimental design with five replicates of four plants was adopted. Initially, data were submitted to analysis of individual variance of the substrates, in each environment of cultivation, then performing the evaluation of the residual mean square and the analysis of these environments together for comparison. The best substrate for baruzeiro seedlings was pure vermiculite. The substrates with 100% of manure and the substrate with 33.33% of the mixed studied materials can be used for seedlings formation. The environment with screen can be indicated for the production of baruzeiro seedlings, since it gave vigor to the seedlings.