52 resultados para Evolution of vibrios
Resumo:
Mice infected with Trypanosoma cruzi were challenged with 2x10[raised to the power of 6] cells of sarcoma 180 (ascite tumor) by i.p. route, on day seven post infection. Tumor development was followed by evaluation of weight gain, by measurement of ascitic fluid produced and enumeration of tumor cells in ascitic fluid. Infected mice were more resitant to tumor development as demonstrated by reduction in ascites formation and by reduction in the number of tumor cells in ascitic fluid, at different time intervals after tumor challenge. The number of peritoneal cells exsudated after tumor inoculation was greater in infected mice than in controls. This increased resitance of mice infected with T. cruzi to tumor development could be due to the action of macrophages activated by the infection and by the action of endotoxins absorbed from the gut or produced by the own parasite.
Resumo:
Many blood feeders use adenine nucleotides as cues for locating blood meal. Structure-activity relationship of adenine nucleotides as phagostimulants varies between closely-related species of blood feeders. It is suggested that a preexisting diverse pool of nucleotide-binding proteins present in all living cells, serves as a source of receptor proteins for the gustatory receptors involved in blood detection. It is proposed that the selection of any such nucleotide-binding protein is random.
Resumo:
This review takes into account primarily the work done in our laboratory with insects from the major Holometabola orders. Only the most significant data for each insect will be presented and a proposal on the evolution of Holometabola insect digstive systems will be advanced.
Resumo:
Modification of the immune response to schistosomal infection in children or offspring born to mother R infected with Schistosoma mansoni has been demonstrated in human and in experimental schistosomiasis. One of the hypothesis to explain this fact could be the transfer of circulating antigens and antibodies from mother to foetus through the placenta or from mother to child by milk. The results of this spontaneous transference are controversial in the literature. In an attempt to investigate these questions, we studied one hundred and twenty offspring (Swiss mice), sixty born to infected-mothers (group A) and sixty born to non-infected mothers (group B). These were percutaneously infected with 50 cercariae/mouse, and divided in six sub-groups (20 mice/sub-group), according to the following schedule: after birth (sub-groups A.I and B.I), 10 days old (sub-groups A.II and B.II) and 21 days old (sub-groups A.III and B.III). After the exposure period, the young mice returned to their own mothers for nursing. Six weeks later, the mice were killed. We obtained the following results: 1) There is transference of antibody to cercariae (CAP), adult worms (SWAP) and egg antigens (SEA) from the infected mothers to the offspring, probably through placenta and milk; 2) Offspring born to infected mothers exhibit much less coagulative hepatic necrosis and show a lower number of eggs in the small intestine and a less intense and predominant exsudative stage of the hepatic granulomas when compared with the exsudative-productive stage of the control groups. The findings suggest that congenital and nursing factors can interfere on the development of the schistosomiasis infection, causing an hyporesponse to the eggs.
Resumo:
Based on phylogenetic analysis of 18S rRNA sequences and clade taxon composition, this paper adopts a biogeographical approach to understanding the evolutionary relationships of the human and primate infective trypanosomes, Trypanosoma cruzi, T. brucei, T. rangeli and T. cyclops. Results indicate that these parasites have divergent origins and fundamentally different patterns of evolution. T. cruzi is placed in a clade with T. rangeli and trypanosomes specific to bats and a kangaroo. The predominantly South American and Australian origins of parasites within this clade suggest an ancient southern super-continent origin for ancestral T. cruzi, possibly in marsupials. T. brucei clusters exclusively with mammalian, salivarian trypanosomes of African origin, suggesting an evolutionary history confined to Africa, while T. cyclops, from an Asian primate appears to have evolved separately and is placed in a clade with T. (Megatrypanum) species. Relating clade taxon composition to palaeogeographic evidence, the divergence of T. brucei and T. cruzi can be dated to the mid-Cretaceous, around 100 million years before present, following the separation of Africa, South America and Euramerica. Such an estimate of divergence time is considerably more recent than those of most previous studies based on molecular clock methods. Perhaps significantly, Salivarian trypanosomes appear, from these data, to be evolving several times faster than Schizotrypanum species, a factor which may have contributed to previous anomalous estimates of divergence times.
Resumo:
Three different periods may be considered in the evolution of knowledge about the clinical and epidemiological aspects of Chagas disease since its discovery: (a) early period concerning the studies carried out by Carlos Chagas in Lassance with the collaboration of other investigators of the Manguinhos School. At that time the disease was described and the parasite, transmitters and reservoirs were studied. The coexistence of endemic goiter in the same region generated some confusion about the clinical forms of the disease; (b) second period involving uncertainty and the description of isolated cases, which lasted until the 1940 decade. Many acute cases were described during this period and the disease was recognized in many Latin American countries. Particularly important were the studies of the Argentine Mission of Regional Pathology Studies, which culminated with the description of the Romaña sign in the 1930 decade, facilitating the diagnosis of the early phase of the disease. However, the chronic phase, which was the most important, continued to be difficult to recognize; (c) period of consolidation of knowledge and recognition of the importance of Chagas disease. Studies conducted by Laranja, Dias and Nóbrega in Bambuí updated the description of Chagas heart disease made by Carlos Chagas and Eurico Villela. From then on, the disease was more easily recognized, especially with the emphasis on the use of a serologic diagnosis; (d) period of enlargement of knowledges on the disease. The studies on denervation conducted in Ribeirão Preto by Fritz Köberle starting in the 1950 decade led to a better understanding of the relations between Chagas disease and megaesophagus and other visceral megas detected in endemic areas.
Resumo:
Triatomine bug species such as Microtriatoma trinidadensis, Eratyrus mucronatus, Belminus herreri, Panstrongylus lignarius, and Triatoma tibiamaculata are exquisitely adapted to specialist niches. This suggests a long evolutionary history, as well as the recent dramatic spread a few eclectic, domiciliated triatomine species. Virtually all species of the genus Rhodnius are primarily associated with palms. The genus Panstrongylus is predominantly associated with burrows and tree cavities and the genus Triatoma with terrestrial rocky habitats or rodent burrows. Two major sub-divisions have been defined within the species Trypanosoma cruzi, as T. cruzi 1 (Z1) and T. cruzi 2 (Z2). The affinities of a third group (Z3) are uncertain. Host and habitat associations lead us to propose that T. cruzi 1 (Z1) has evolved in an arboreal, palm tree habitat with the triatomine tribe Rhodniini, in association with the opossum Didelphis. Similarly we propose that T. cruzi (Z2) and Z3 evolved in a terrestrial habitat in burrows and in rocky locations with the triatomine tribe Triatomini, in association with edentates, and/or possibly ground dwelling marsupials. Both sub-divisions of T. cruzi may have been contemporary in South America up to 65 million years ago. Alternatively, T. cruzi 2 (Z2) may have evolved more recently from T. cruzi 1 (Z1) by host transfers into rodents, edentates, and primates. We have constructed a molecular phylogeny of haematophagous vectors, including triatomine bugs, which suggests that faecal transmission of trypanosomes may be the ancestral route. A molecular clock phylogeny suggests that Rhodnius and Triatoma diverged before the arrival, about 40 million years ago, of bats and rodents into South America.
Resumo:
The evolutionary history and times of divergence of triatomine bug lineages are estimated from molecular clocks inferred from nucleotide sequences of the small subunit SSU (18S) and the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA of these reduviids. The 18S rDNA molecular clock rate in Triatominae, and Prosorrhynchan Hemiptera in general, appears to be of 1.8% per 100 million years (my). The ITS-2 molecular clock rate in Triatominae is estimated to be around 0.4-1% per 1 my, indicating that ITS-2 evolves 23-55 times faster than 18S rDNA. Inferred chronological data about the evolution of Triatominae fit well with current hypotheses on their evolutionary histories, but suggest reconsideration of the current taxonomy of North American species complexes.
Resumo:
Recently two hypotheses have been proposed for the evolution of Leishmania involving respectively a Neotropical or Paleartic origin for the species. Here an alternative proposal on the phylogeny of Leishmania based on the major divisions within the genus is presented. In this hypothesis a Neotropic origin is retained for L. (Viannia) and Paraleishmania, a recently desribed section within the genus Leishmania, while an African origin is proposed for L. (Leishmania) and possibly Sauroleishmania. The current distribution of Leishmania in the Neotropics is explained as the product of multiple introductions of Leishmania parasites into the New World. Problems with organismal identity in Sauroleishmania and the use of molecular sequence data in inferring phylogenies are also discussed.