56 resultados para Equation prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to measure and analyze total rainfall (P), rainfall intensity and five-day antecedent rainfall effects on runoff (R); to compare measured and simulated R values using the Soil Conservation Service Curve Number method (CN) for each rainfall event; and to establish average R/P ratios for observed R values. A one-year (07/01/96 to 06/30/97) rainfall-runoff data study was carried out in the Capetinga watershed (962.4 ha), located at the Federal District of Brazil, 47° 52' longitude West and 15° 52' latitude South. Soils of the watershed were predominantly covered by natural vegetation. Total rainfall and runoff for the period were 1,744 and 52.5 mm, respectively, providing R/P of 3% and suggesting that watershed physical characteristics favored water infiltration into the soil. A multivariate regression analysis for 31 main rainfall-runoff events totaling 781.9 and 51.0 mm, respectively, indicated that the amount of runoff was only dependent upon rainfall volume. Simulated values of total runoff were underestimated about 15% when using CN method and an area-weighted average of the CN based on published values. On the other hand, when average values of CN were calculated for the watershed, total runoff was overestimated about 39%, suggesting that CN method shoud be used with care in areas under natural vegetation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil CO2 emission has high spatial variability because it depends strongly on soil properties. The purpose of this study was to (i) characterize the spatial variability of soil respiration and related properties, (ii) evaluate the accuracy of results of the ordinary kriging method and sequential Gaussian simulation, and (iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission and other properties using sequential Gaussian simulations. The study was conducted in a sugarcane area, using a regular sampling grid with 141 points, where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter and soil bulk density were evaluated. All variables showed spatial dependence structure. The soil CO2 emission was positively correlated with organic matter (r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values were considered, the air-filled pore space was the variable mainly responsible for the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01). For all variables, individual simulations represented the cumulative distribution functions and variograms better than ordinary kriging and E-type estimates. The greatest uncertainties in predicting soil CO2 emission were associated with areas with the highest estimated values, which produced estimates from 0.18 to 1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of the uncertainties generated by the different scenarios can be used in inventories of greenhouse gases, to provide conservative estimates of the potential emission of these gases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to estimate the genetic parameters, genotypic and phenotypic correlations, and direct and indirect genetic gains among and within rubber tree (Hevea brasiliensis) progenies. The experiment was set up at the Municipality of Jaú, SP, Brazil. A randomized complete block design was used, with 22 treatments (progenies), 6 replicates, and 10 plants per plot at a spacing of 3x3 m. Three‑year‑old progenies were assessed for girth, rubber yield, and bark thickness by direct and indirect gains and genotypic correlations. The number of latex vessel rings showed the best correlations, correlating positively and significantly with girth and bark thickness. Selection gains among progenies were greater than within progeny for all the variables analyzed. Total gains obtained were high, especially for girth increase and rubber yield, which were 93.38 and 105.95%, respectively. Young progeny selection can maximize the expected genetic gains, reducing the rubber tree selection cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to generate drift curves from pesticide applications on coffee plants and to compare them with two European drift-prediction models. The used methodology is based on the ISO 22866 standard. The experimental design was a randomized complete block with ten replicates in a 2x20 split-plot arrangement. The evaluated factors were: two types of nozzles (hollow cone with and without air induction) and 20 parallel distances to the crop line outside of the target area, spaced at 2.5 m. Blotting papers were used as a target and placed in each of the evaluated distances. The spray solution was composed of water+rhodamine B fluorescent tracer at a concentration of 100 mg L-1, for detection by fluorimetry. A spray volume of 400 L ha-1 was applied using a hydropneumatic sprayer. The air-induction nozzle reduces the drift up to 20 m from the treated area. The application with the hollow cone nozzle results in 6.68% maximum drift in the nearest collector of the treated area. The German and Dutch models overestimate the drift at distances closest to the crop, although the Dutch model more closely approximates the drift curves generated by both spray nozzles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to develop uni- and multivariate models to predict maximum soil shear strength (τmax) under different normal stresses (σn), water contents (U), and soil managements. The study was carried out in a Rhodic Haplustox under Cerrado (control area) and under no-tillage and conventional tillage systems. Undisturbed soil samples were taken in the 0.00-0.05 m layer and subjected to increasing U and σn, in shear strength tests. The uni- and multivariate models - respectively τmax=10(a+bU) and τmax=10(a+bU+cσn) - were significant in all three soil management systems evaluated and they satisfactorily explain the relationship between U, σn, and τmax. The soil under Cerrado has the highest shear strength (τ) estimated with the univariate model, regardless of the soil water content, whereas the soil under conventional tillage shows the highest values with the multivariate model, which were associated to the lowest water contents at the soil consistency limits in this management system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To evaluate the association of Doppler of uterine artery and flow-mediated dilation of brachial artery (FMD) in the assessment of placental perfusion and endothelial function to predict preeclampsia. Materials and Methods A total of 91 patients considered as at risk for developing preeclampsia were recruited at the prenatal unit of the authors' institution. All the patients underwent FMD and Doppler of uterine arteries between their 24th and 28th gestational weeks. Calculations of sensitivity and specificity for both isolated and associated methods were performed. Results Nineteen out of the 91 patients developed preeclampsia, while the rest remained normotensive. Doppler flowmetry of uterine arteries with presence of bilateral protodiastolic notch had sensitivity of 63.1% and specificity of 87.5% for the prediction of preeclampsia. Considering a cutoff value of 6.5%, FMD showed sensitivity of 84.2% and specificity of 73.6%. In a parallel analysis, as the two methods were associated, sensitivity was 94.2% and specificity, 64.4%. Conclusion The association of Doppler study of uterine arteries and FMD has proved to be an interesting clinical strategy for the prediction of preeclampsia, which may represent a positive impact on prenatal care of patients considered as at high-risk for developing such a condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saponins are natural soaplike foam-forming compounds widely used in foods, cosmetic and pharmaceutical preparations. In this work foamability and foam lifetime of foams obtained from Ilex paraguariensis unripe fruits were analyzed. Polysorbate 80 and sodium dodecyl sulfate were used as reference surfactants. Aiming a better data understanding a linearized 4-parameters Weibull function was proposed. The mate hydroethanolic extract (ME) and a mate saponin enriched fraction (MSF) afforded foamability and foam lifetime comparable to the synthetic surfactants. The linearization of the Weibull equation allowed the statistical comparison of foam decay curves, improving former mathematical approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square correlation coefficient leave-group-out cross validation (LGO-CV) (Q²) between experimental and predicted RI for training set by GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool for quantitative structure-retention relationship (QSRR) studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asian rust of soybean [Glycine max (L.) Merril] is one of the most important fungal diseases of this crop worldwide. The recent introduction of Phakopsora pachyrhizi Syd. & P. Syd in the Americas represents a major threat to soybean production in the main growing regions, and significant losses have already been reported. P. pachyrhizi is extremely aggressive under favorable weather conditions, causing rapid plant defoliation. Epidemiological studies, under both controlled and natural environmental conditions, have been done for several decades with the aim of elucidating factors that affect the disease cycle as a basis for disease modeling. The recent spread of Asian soybean rust to major production regions in the world has promoted new development, testing and application of mathematical models to assess the risk and predict the disease. These efforts have included the integration of new data, epidemiological knowledge, statistical methods, and advances in computer simulation to develop models and systems with different spatial and temporal scales, objectives and audience. In this review, we present a comprehensive discussion on the models and systems that have been tested to predict and assess the risk of Asian soybean rust. Limitations, uncertainties and challenges for modelers are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schrödinger equation for a bidimensinal potential. This potential can be applied in several systems in physical and chemistry context , for instance, it can be used to study benzene molecule.