21 resultados para Epinerphrine and norepinephrine.
Resumo:
Adrenomedullin, a 52-amino acid residue peptide, has numerous biological actions which are of potential importance to cardiovascular homeostasis, growth and development of cardiovascular tissues and bone, prevention of infection, and regulation of body fluid and electrolyte balance. Studies in man using intravenous infusion of the peptide have demonstrated that, at plasma levels detected after myocardial infarction or in heart failure, adrenomedullin reduces arterial pressure, increases heart rate and cardiac output, and activates the sympathetic and renin-angiotensin systems but suppresses aldosterone. The thresholds for these responses differ, being lower under some experimental circumstances for arterial pressure than for the other biological effects. Adrenomedullin administration inhibits the pressor and aldosterone-stimulating action of angiotensin II in man. By contrast, the pressor effect of norepinephrine is little altered by concomitant adrenomedullin administration. Although in the absence of a safe, specific antagonist of the actions of endogenous adrenomedullin it is difficult to be certain about the physiological and pathophysiological importance of this peptide in man, current evidence suggests that it serves to protect against cardiovascular overload and injury. Hope has been expressed that adrenomedullin or an agonist specific for adrenomedullin receptors might find a place in the treatment of cardiovascular disorders.
Resumo:
The first minutes of the time course of cardiopulmonary reflex control evoked by lower body negative pressure (LBNP) in patients with hypertensive cardiomyopathy have not been investigated in detail. We studied 15 hypertensive patients with left ventricular dysfunction (LVD) and 15 matched normal controls to observe the time course response of the forearm vascular resistance (FVR) during 3 min of LBNP at -10, -15, and -40 mmHg in unloading the cardiopulmonary receptors. Analysis of the average of 3-min intervals of FVR showed a blunted response of the LVD patients at -10 mmHg (P = 0.03), but a similar response in both groups at -15 and -40 mmHg. However, using a minute-to-minute analysis of the FVR at -15 and -40 mmHg, we observed a similar response in both groups at the 1st min, but a marked decrease of FVR in the LVD group at the 3rd min of LBNP at -15 mmHg (P = 0.017), and -40 mmHg (P = 0.004). Plasma norepinephrine levels were analyzed as another neurohumoral measurement of cardiopulmonary receptor response to LBNP, and showed a blunted response in the LVD group at -10 (P = 0.013), -15 (P = 0.032) and -40 mmHg (P = 0.004). We concluded that the cardiopulmonary reflex response in patients with hypertensive cardiomyopathy is blunted at lower levels of LBNP. However, at higher levels, the cardiopulmonary reflex has a normal initial response that decreases progressively with time. As a consequence of the time-dependent response, the cardiopulmonary reflex response should be measured over small intervals of time in clinical studies.
Resumo:
Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days) and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4ºC, 2 h), were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(³H-methyl)-methionine was used. The O-methylated derivatives were oxidized to ³H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18%) and hippocampal dopamine (about 20%) stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39%) in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20%) as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.
Resumo:
Previous studies have shown that the vascular reactivity of the mouse aorta differs substantially from that of the rat aorta in response to several agonists such as angiotensin II, endothelin-1 and isoproterenol. However, no information is available about the agonists bradykinin (BK) and DesArg9BK (DBK). Our aim was to determine the potential expression of kinin B1 and B2 receptors in the abdominal mouse aorta isolated from C57BL/6 mice. Contraction and relaxation responses to BK and DBK were investigated using isometric recordings. The kinins were unable to induce relaxation but concentration-contraction response curves were obtained by applying increasing concentrations of the agonists BK and DBK. These effects were blocked by the antagonists Icatibant and R-715, respectively. The potency (pD2) calculated from the curves was 7.0 ± 0.1 for BK and 7.3 ± 0.2 for DBK. The efficacy was 51 ± 2% for BK and 30 ± 1% for DBK when compared to 1 µM norepinephrine. The concentration-dependent responses of BK and DBK were markedly inhibited by the arachidonic acid inhibitor indomethacin (1 µM), suggesting a mediation by the cyclooxygenase pathway. These contractile responses were not potentiated in the presence of the NOS inhibitor L-NAME (1 mM) or endothelium-denuded aorta, indicating that the NO pathway is not involved. We conclude that the mouse aorta constitutively contains B1 and B2 subtypes of kinin receptors and that stimulation with BK and DBK induces contractile effect mediated by endothelium-independent vasoconstrictor prostanoids.
Resumo:
Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca2+ were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca2+ at various concentrations. Maximum contractility (Emax) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca2+ (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca2+ at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in Emax for NE and from 0.729±0.037 to 0.645±0.056 g/mg in Emax for Ca2+, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.
Resumo:
In the current literature, there is evidence that psychological factors can affect the incidence and progression of some cancers. Interleukin 6 (IL-6) is known to be elevated in individuals experiencing chronic stress and is also involved in oncogenesis and cancer progression. However, the precise mechanism of IL-6 induction by the stress-related hormone norepinephrine (NE) is not clear, and, furthermore, there are no reports about the effect of NE on IL-6 expression in gastric epithelial cells. In this study, we examined the effect of NE on IL-6 expression in immortalized human gastric epithelial cells (GES-1 cells). Using real-time PCR and enzyme-linked immunoassay, we demonstrated that NE can induce IL-6 mRNA and protein expression in GES-1 cells. The induction is through the β-adrenergic receptor-cAMP-protein kinase A pathway and mainly at the transcriptional level. Progressive 5′-deletions and site-directed mutagenesis of the parental construct show that, although activating-protein-1 (AP-1), cAMP-responsive element binding protein (CREB), CCAAT-enhancer binding protein-β (C/EBP-β), and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding sites are all required in the basal transcription of IL-6, only AP-1 and CREB binding sites in the IL-6 promoter are required in NE-induced IL-6 expression. The results suggest that chronic stress may increase IL-6 secretion of human gastric epithelial cells, at least in part, by the stress-associated hormone norepinephrine, and provides basic data on stress and gastric cancer progression.