20 resultados para Electronic signature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative analysis is made on the correlation ship of thermodynamic property, i.e., standard enthalpy of formation (ΔH fº) with Kier's molecular connectivity index(¹Xv),vander waal's volume (Vw) electrotopological state index (E) and refractotopological state index (R) in gaseous state of alkanes. The regression analysis reveals a significant linear correlation of standard enthalpy of formation (ΔH fº) with ¹Xv, Vw, E and R. The equations obtained by regression analysis may be used to estimate standard enthalpy of formation (ΔH fº) of alkanes in gaseous state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop a an automated bench top electronic penetrometer (ABEP) that allows performing tests with high rate of data acquisition (up to 19,600 Hz) and with variation of the displacement velocity and of the base area of cone penetration. The mechanical components of the ABEP are: a supporting structure, stepper motor, velocity reducer, double nut ball screw and six penetration probes. The electronic components of ABEP are: a "driver" to control rotation and displacement, power supply, three load cells, two software programs for running and storing data, and a data acquisition module. This penetrometer presented in compact size, portable and in 32 validation tests it proved easy to operate, and showed high resolution, high velocity in reliability in data collection. During the validation tests the equipment met the objectives, because the test results showed that the ABEP could use different sizes of cones, allowed work at different velocities, showed for velocity and displacement, were only 1.3% and 0.7%, respectively, at the highest velocity (30 mm s-1) and 1% and 0.9%, respectively for the lowest velocity (0.1 mm s-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an electronic transducer for multiphase flow measurement. Its high sensitivity, good signal to noise ratio and accuracy are achieved through an electrical impedance sensor with a special guard technique. The transducer consists of a wide bandwidth and high slew rate differentiator where the lead inductance and stray capacitance effects are compensated. The sensor edge effect is eliminated by using a guard electrode based on the virtual ground potential of the operational amplifier. A theoretical modeling and a calibration method are also presented. The results obtained seem to confirm the validity of the proposed technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present investigation was to compare the sensitivity of an electronic nociceptive mechanical paw test with classical mechanical tests to quantify the intensity variation of inflammatory nociception. The electronic pressure-meter test consists of inducing the hindpaw flexion reflex by poking the plantar region with a polypropylene pipette tip adapted to a hand-held force transducer. This method was compared with the classical von Frey filaments test and with the rat paw constant pressure test, a modification of the Randall and Selitto test developed by our group. When comparing the three methods, the electronic pressure-meter and the rat paw constant pressure test, but not the von Frey filaments test, detected time vs treatment interactions in prostaglandin E2 (PGE2)-induced hypernociception. Both methods also detected the PGE2-induced hypernociception in dose- (50-400 ng/paw) and time- (1-4 h) dependent manners, and time vs treatment interactions induced by carrageenin (25-400 µg/paw). Furthermore, the electronic pressure-meter test was more sensitive at early times, whereas the constant pressure test was more sensitive at later times. Moreover, the electronic pressure-meter test detected the dose-dependent antinociceptive effect of local indomethacin (30-300 µg/paw) and dipyrone (80-320 µg/paw) on carrageenin- (200 µg/paw) and PGE2- (100 ng/paw) induced hypernociception, respectively, and also detected the ineffectiveness of indomethacin (300 µg) on the effect of PGE2. Our results show that the electronic pressure-meter provides a sensitive, objective and quantitative mechanical nociceptive test that could be useful to characterize new nociceptive inflammatory mediators and also to evaluate new peripheral analgesic substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present investigation was to describe and validate an electronic mechanical test for quantification of the intensity of inflammatory nociception in mice. The electronic pressure-meter test consists of inducing the animal hindpaw flexion reflex by poking the plantar region with a polypropylene pipette tip adapted to a hand-held force transducer. This method was compared to the classical von Frey filaments test in which pressure intensity is automatically recorded after the nociceptive hindpaw flexion reflex. The electronic pressure-meter and the von Frey filaments were used to detect time versus treatment interactions of carrageenin-induced hypernociception. In two separate experiments, the electronic pressure-meter was more sensitive than the von Frey filaments for the detection of the increase in nociception (hypernociception) induced by small doses of carrageenin (30 µg). The electronic pressure-meter detected the antinociceptive effect of non-steroidal drugs in a dose-dependent manner. Indomethacin administered intraperitoneally (1.8-15 mg/kg) or intraplantarly (30-300 µg/paw) prevented the hypersensitive effect of carrageenin (100 µg/paw). The electronic pressure-meter also detected the hypernociceptive effect of prostaglandin E2 (PGE2; 10-100 ng) in a dose-dependent manner. The hypernociceptive effect of PGE2 (100 ng) was blocked by dipyrone (160 and 320 µg/paw) but not by intraplantar administration of indomethacin (300 µg/paw). The present results validate the use of the electronic pressure-meter as more sensitive than the von Frey filaments in mice. Furthermore, it is an objective and quantitative nociceptive test for the evaluation of the peripheral antinociceptive effect of anti-inflammatory analgesic drugs, which inhibit prostaglandin synthesis (indomethacin) or directly block the ongoing hypernociception (dipyrone).