19 resultados para Electron transfer pathway
Resumo:
In present work, we analyzed the copper electrodeposition onto GCE (System I) and HOPGE (System II) from perchlorate solutions. The current density transients obtained from system I and II were well described through a kinetic mechanism that involves four different contributions: (a) a Langmuir type adsorption process, b) an electron transfer from Cu2+→Cu+, (c) a 3D nucleation limited by a mass transfer reaction and (d) a proton reduction process. It was observed that the values of the nucleation rate, the number of active nucleation sites were increased with the overpotential and they are bigger onto GCE in comparison with HOPGE.
Resumo:
The carcinogenic potential of carbendazim and its metabolites was analyzed using statistical treatment of electronic parameters obtained from DFT/ 6-311++G(d,p) and AM1 calculations. The carcinogen-DNA interaction is described in the framework of the theory of unsynchronized resonance of covalent bond as a process of electron transfer involving the HOMO and LUMO frontier orbitals. Through a Principal Component Analysis (PCA) of the electron affinity, carcinogen-DNA interaction energy, electrostatic attraction and cell membrane permeability (dipole moment m and partition coefficient LogP) evidence was obtained showing carbendazim displays carcinogenic activity. For the metabolites of carbendazim, no evidence was found in the literature of their carcinogenic activities. However, the electronic parameters for these metabolites exhibited similarity to known carcinogens, thereby showing the importance of the results obtained in this study for a policy based on the precautionary principle.
Resumo:
The respiration, membrane potential (Dy), and oxidative phosphorylation of mitochondria in situ were determined in spheroplasts obtained from Candida albicans control strain ATCC 90028 by lyticase treatment. Mitochondria in situ were able to phosphorylate externally added ADP (200 µM) in the presence of 0.05% BSA. Mitochondria in situ generated and sustained stable mitochondrial Dy respiring on 5 mM NAD-linked substrates, 5 mM succinate, or 100 µM N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride plus 1 mM ascorbate. Rotenone (4 µM) inhibited respiration by 30% and 2 µM antimycin A or myxothiazole and 1 mM cyanide inhibited it by 85%. Cyanide-insensitive respiration was partially blocked by 2 mM benzohydroxamic acid, suggesting the presence of an alternative oxidase. Candida albicans mitochondria in situ presented a carboxyatractyloside-insensitive increase of Dy induced by 5 mM ATP and 0.5% BSA, and Dy decrease induced by 10 µM linoleic acid, both suggesting the existence of an uncoupling protein. The presence of this protein was subsequently confirmed by immunodetection and respiration experiments with isolated mitochondria. In conclusion, Candida albicans ATCC 90028 possesses an alternative electron transfer chain and alternative oxidase, both absent in animal cells. These pathways can be exceptional targets for the design of new chemotherapeutic agents. Blockage of these respiratory pathways together with inhibition of the uncoupling protein (another potential target for drug design) could lead to increased production of reactive oxygen species, dysfunction of Candida mitochondria, and possibly to oxidative cell death.
Resumo:
Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.