28 resultados para Ectopic osteogenesis
Resumo:
The intact ovarian pregnancy is an extremely rare condition. We report the case of a 34- years old woman case, nuliparus, with no previous clinical history of pelvic disease. An intact right ovarian pregnancy was diagnosed by a transvaginal ultrasonographic exam. A video-laparoscopy surgery was undertaken and only the ectopic tissue was removed. The authors discuss the effectiveness of the diagnostic tools and the surgical approach.
Resumo:
In order to study possible alterations of the skeleton which might play a role in the pathogenesis of the periodontitis of "cara inchada" in young cattle, ribs from 20 affected calves, 2 to 10 months old, were examined. Electrolytically decalcified longitudinal sections of the costochondral junction and cross sections through the corpus costae, stained with Haematoxylin-Eosin, were studied. In five calves, longitudinal sections of the proximal humerus were examined as well. The status of mineralization was checked by microradiograms. Systemic alteration of the skeleton due to disturbances of mineral metabolism could not be shown in any of the animals. In seven 2 to 4 months old calves, no bone changes were found. The reduced osteogenesis in six 3 to 5 months old calves and the reduced osteogenesis and diminished chondral growth in seven 5 to 10 months old calves are therefore a consequence of the disease. The results show that the development of the alveolar bone was not defective, so this cannot be a determinant factor for the development of the periodontitis of "cara inchada" in cattle.
Resumo:
In this study we characterize the presence of muscarinic acetylcholine receptors (mAChR) in the isthmo-optic nucleus (ION) of chicks by immunohistochemistry with the M35 antibody. Some M35-immunoreactive fibers were observed emerging from the retinal optic nerve insertion, suggesting that they could be centrifugal fibers. Indeed, intraocular injections of cholera toxin B (CTb), a retrograde tracer, and double-labeling with M35 and CTb in the ION confirmed this hypothesis. The presence of M35-immunoreactive cells and the possible mAChR expression in ION and ectopic neuron cells in the chick brain strongly suggest the existence of such a cholinergic system in this nucleus and that acetylcholine release from amacrine cells may mediate interactions between retinal cells and ION terminals.
Resumo:
Recent studies from several groups have indicated that abnormal or ectopic expression and function of adrenal receptors for various hormones may regulate cortisol production in ACTH-independent hypercortisolism. Gastric inhibitory polypeptide (GIP)-dependent Cushing's syndrome has been described in patients with either unilateral adenoma or bilateral macronodular adrenal hyperplasia; this syndrome results from the large adrenal overexpression of the GIP receptor without any activating mutation. We have conducted a systematic in vivo evaluation of patients with adrenal Cushing's syndrome in order to identify the presence of abnormal hormone receptors. In macronodular adrenal hyperplasia, we have identified, in addition to GIP-dependent Cushing's syndrome, other patients in whom cortisol production was regulated abnormally by vasopressin, ß-adrenergic receptor agonists, hCG/LH, or serotonin 5HT-4 receptor agonists. In patients with unilateral adrenal adenoma, the abnormal expression or function of GIP or vasopressin receptor has been found, but the presence of ectopic or abnormal hormone receptors appears to be less prevalent than in macronodular adrenal hyperplasia. The identification of the presence of an abnormal adrenal receptor offers the possibility of a new pharmacological approach to control hypercortisolism by suppressing the endogenous ligands or by using specific antagonists for the abnormal receptors.
Resumo:
Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffolds for guiding bone tissue engineering has revealed unexpected manners in which the scaffold and cells interact with each other, so that a complex interplay of integration and disintegration of the scaffold ultimately results in efficient and desirable, although unpredictable, effects. Likewise, the manner in which biomaterial scaffolds are "resorbed" by osteoclasts in vitro and in vivo highlights more complex scenarios than predicted from knowledge of physiological bone resorption per se. Investigation of novel biomaterials for bone engineering represents an essential area for the design of tissue engineering strategies.
Resumo:
To evaluate the impact of electroconvulsive therapy on arterial blood pressure, heart rate, heart rate variability, and the occurrence of ischemia or arrhythmias, 38 (18 men) depressive patients free from systemic diseases, 50 to 83 years old (mean: 64.7 ± 8.6) underwent electroconvulsive therapy. All patients were studied with simultaneous 24-h ambulatory blood pressure and Holter monitoring, starting 18 h before and continuing for 3 h after electroconvulsive therapy. Blood pressure, heart rate, heart rate variability, arrhythmias, and ischemic episodes were recorded. Before each session of electroconvulsive therapy, blood pressure and heart rate were in the normal range; supraventricular ectopic beats occurred in all patients and ventricular ectopic beats in 27/38; 2 patients had non-sustained ventricular tachycardia. After shock, systolic, mean and diastolic blood pressure increased 29, 25, and 24% (P < 0.001), respectively, and returned to baseline values within 1 h. Maximum, mean and minimum heart rate increased 56, 52, and 49% (P < 0.001), respectively, followed by a significant decrease within 5 min; heart rate gradually increased again thereafter and remained elevated for 1 h. Analysis of heart rate variability showed increased sympathetic activity during shock with a decrease in both sympathetic and parasympathetic drive afterwards. No serious adverse effects occurred; electroconvulsive therapy did not trigger any malignant arrhythmias or ischemia. In middle-aged and elderly people free from systemic diseases, electroconvulsive therapy caused transitory increases in blood pressure and heart rate and a decrease in heart rate variability but these changes were not associated with serious adverse clinical events.
Resumo:
Osteoporosis and its consequent fractures are a great social and medical problem mainly occurring in post-menopausal women. Effective forms of prevention and treatment of osteoporosis associated with lower costs and the least side effects are needed. Electrical fields are able to stimulate osteogenesis in fractures, but little is known about their action on osteoporotic tissue. The aim of the present study was to determine by bone densitometry the effects of electrical stimulation on ovariectomized female Wistar rats. Thirty rats (220 ± 10 g) were divided into three groups: sham surgery (SHAM), bilateral ovariectomy (OVX) and bilateral ovariectomy + electrical stimulation (OVX + ES). The OVX + ES group was submitted to a 20-min session of a low-intensity pulsed electrical field (1.5 MHz, 30 mW/cm²) starting on the 7th day after surgery, five times a week (total = 55 sessions). Global, spine and limb bone mineral density were measured by dual-energy X-ray absorptiometry (DXA Hologic 4500A) before surgery and at the end of protocol (84 days after surgery). Electrical stimulation improved (P < 0.05) global (0.1522 ± 0.002), spine (0.1502 ± 0.003), and limb (0.1294 ± 0.003 g/cm²) bone mineral density compared to OVX group (0.1447 ± 0.001, 0.1393 ± 0.002, and 0.1212 ± 0.001, respectively). The OVX + ES group also showed significantly higher global bone mineral content (9.547 ± 0.114 g) when compared to both SHAM (8.693 ± 0.165 g) and OVX (8.522 ± 0.207 g) groups (P < 0.05). We have demonstrated that electrical fields stimulate osteogenesis in ovariectomized female rats. Their efficacy in osteoporosis remains to be demonstrated.
Resumo:
The objective of the present study was to investigate clinical, echocardiographic and electrocardiographic (12-lead resting ECG, 24-h ambulatory ECG monitoring and signal-averaged ECG (SAECG)) parameters in subjects with chronic Chagas' disease in a long-term follow-up as prognostic markers for adverse outcomes. Fifty adult outpatients (34 to 74 years old, 31 females) staged according to Los Andes class I, II or III and complaining of palpitation were enrolled in a longitudinal study. SAECG was analyzed in time and frequency domains and the endpoint was a composite of cardiac death and ventricular tachycardia. During a follow-up of 84.2 ± 39.0 months, 34.0% of the patients developed adverse outcomes (9 cardiac deaths and 11 episodes of ventricular tachycardia). After optimal dichotomization, in a stepwise multivariate Cox-hazard regression model, apical aneurysm (HR = 3.7; 95% CI = 1.2-1.3; P = 0.02), left ventricular ejection fraction <62% (HR = 4.60; 95% CI = 1.39-15.24; P = 0.01) and incidence of ventricular premature contractions >614 per 24 h (hazard ratio = 6.1; 95% CI = 1.7-22.6; P = 0.006) were independent predictors of the composite endpoint. Although a high frequency content in SAECG demonstrated association with the presence of left ventricular dysfunction and myocardial fibrosis, its predictive value for the composite endpoint was not significant. Apical aneurysms, reduced left ventricular function and a high incidence of ventricular ectopic beats over a 24-h period have a strong predictive value for a composite endpoint of cardiac death and ventricular tachycardia in subjects with chronic Chagas' disease.
Resumo:
Osteoporosis and atherosclerosis are chronic degenerative diseases which have been considered to be independent and whose common characteristic is increasing incidence with age. At present, growing evidence indicates the existence of a correlation between cardiovascular disease and osteoporosis, irrespective of age. The morbidity and mortality of osteoporosis is mainly related to the occurrence of fractures. Atherosclerosis shows a high rate of morbidity and especially mortality because of its clinical repercussions such as angina pectoris, acute myocardial infarction, stroke, and peripheral vascular insufficiency. Atherosclerotic disease is characterized by the accumulation of lipid material in the arterial wall resulting from autoimmune and inflammatory mechanisms. More than 90% of these fatty plaques undergo calcification. The correlation between osteoporosis and atherosclerosis is being established by studies of the underlying physiopathological mechanisms, which seem to coincide in many biochemical pathways, and of the risk factors for vascular disease, which have also been associated with a higher incidence of low-bone mineral density. In addition, there is evidence indicating an action of antiresorptive drugs on the reduction of cardiovascular risks and the effect of statins, antihypertensives and insulin on bone mass increase. The mechanism of arterial calcification resembles the process of osteogenesis, involving various cells, proteins and cytokines that lead to tissue mineralization. The authors review the factors responsible for atherosclerotic disease that correlate with low-bone mineral density.
Resumo:
A closed fracture was performed on the left tibia of 3-month-old Wistar rats weighing 250 to 350 g that were either healthy (N = 24) or made diabetic with alloxan (N = 24) to investigate the effect of alloxan-induced diabetes on the course of bone fracture healing. Histomorphometric analysis of the fracture site was performed at 7, 14, 25, and 35 days. After 7 days, diabetic rats had significantly less cartilage (P = 0.045) and greater fibrous connective (P = 0.006) tissue formation at the fracture site compared to controls. In contrast, marked callus formation was seen in diabetic rats with significant osteogenesis (P = 0.011, P = 0.010, P = 0.010, respectively, for 14, 25, and 35 days) and chondrogenesis (P = 0.028, P = 0.033, P = 0.019) compared to controls. Radiographic analysis revealed a displaced fracture with poor bone fragment alignment and delayed consolidation at these times in the diabetic group. The levels of alkaline phosphatase were significantly higher in diabetic rats at 25 days (P = 0.009). These results suggest that the initial excessive formation of fibrous connective tissue associated with delay in chondrogenesis and osteogenesis may not provide suitable stability of the fractured site, contributing to the inappropriate alignment of fragments and an increase in the volume of callus in later stages of repair. The resulting displaced fracture in diabetic rats requires long periods for remodeling and complete bone consolidation.
Resumo:
Endometriosis is a complex and multifactorial disease. Chromosomal imbalance screening in endometriotic tissue can be used to detect hot-spot regions in the search for a possible genetic marker for endometriosis. The objective of the present study was to detect chromosomal imbalances by comparative genomic hybridization (CGH) in ectopic tissue samples from ovarian endometriomas and eutopic tissue from the same patients. We evaluated 10 ovarian endometriotic tissues and 10 eutopic endometrial tissues by metaphase CGH. CGH was prepared with normal and test DNA enzymatically digested, ligated to adaptors and amplified by PCR. A second PCR was performed for DNA labeling. Equal amounts of both normal and test-labeled DNA were hybridized in human normal metaphases. The Isis FISH Imaging System V 5.0 software was used for chromosome analysis. In both eutopic and ectopic groups, 4/10 samples presented chromosomal alterations, mainly chromosomal gains. CGH identified 11q12.3-q13.1, 17p11.1-p12, 17q25.3-qter, and 19p as critical regions. Genomic imbalances in 11q, 17p, 17q, and 19p were detected in normal eutopic and/or ectopic endometrium from women with ovarian endometriosis. These regions contain genes such as POLR2G, MXRA7 and UBA52 involved in biological processes that may lead to the establishment and maintenance of endometriotic implants. This genomic imbalance may affect genes in which dysregulation impacts both eutopic and ectopic endometrium.
Resumo:
We investigated whether 6-gingerol affects the maturation and proliferation of osteoblast-like MG63 cells in vitro. Osteoblast-like MG63 cells were treated with 6-gingerol under control conditions, and experimental inflammation was induced by tumor necrosis factor-α (TNF-α). Expression of different osteogenic markers and cytokines was analyzed by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. In addition, alkaline phosphatase (ALP) enzyme activity and biomineralization as markers for differentiation were measured. Treatment with 6-gingerol resulted in insignificant effects on the proliferation rate. 6-Gingerol induced the differentiation of osteoblast-like cells with increased transcription levels of osteogenic markers, upregulated ALP enzyme activity, and enhanced mineralized nodule formation. Stimulation with TNF-α led to enhanced interleukin-6 and nuclear factor-κB expression and downregulated markers of osteoblastic differentiation. 6-Gingerol reduced the degree of inflammation in TNF-α-treated MG-63 cells. In conclusion, 6-gingerol stimulated osteoblast differentiation in normal physiological and inflammatory settings, and therefore, 6-gingerol represents a promising agent for treating osteoporosis or bone inflammation.
Resumo:
During gonad and adrenal development, the POD-1/capsulin/TCF21transcription factor negatively regulates SF-1/NR5A1expression, with higher SF-1 levels being associated with increased adrenal cell proliferation and tumorigenesis. In adrenocortical tumor cells, POD-1 binds to the SF-1 E-box promoter region, decreasing SF-1 expression. However, the modulation of SF-1 expression by POD-1 has not previously been described in normal adrenal cells. Here, we analyzed the basal expression of Pod-1 and Sf-1 in primary cultures of glomerulosa (G) and fasciculata/reticularis (F/R) cells isolated from male Sprague-Dawley rats, and investigated whether POD-1 overexpression modulates the expression of endogenous Sf-1 and its target genes in these cells. POD-1 overexpression, following the transfection of pCMVMycPod-1, significantly decreased the endogenous levels of Sf-1 mRNA and protein in F/R cells, but not in G cells, and also decreased the expression of the SF-1 target StAR in F/R cells. In G cells overexpressing POD-1, no modulation of the expression of SF-1 targets, StAR and CYP11B2, was observed. Our data showing that G and F/R cells respond differently to ectopic POD-1 expression emphasize the functional differences between the outer and inner zones of the adrenal cortex, and support the hypothesis that SF-1 is regulated by POD-1/Tcf21 in normal adrenocortical cells lacking the alterations in cellular physiology found in tumor cells.