18 resultados para EQ
Resumo:
Neste estudo, avaliaram-se a distribuição dos Compostos Fenólicos Totais (CFT) e o perfil de ácidos fenólicos, presentes nas frações, solúvel e insolúvel de dez genótipos de arroz (Oryza sativa L.) de pericarpo pigmentado e não pigmentado. Devido à sua elevada capacidade antioxidante, os compostos fenólicos vem sendo apontados como possíveis promotores da saúde. Grande parte corresponde aos ácidos fenólicos presentes no grão sob a forma solúvel (livre e conjugada) e insolúvel (ligada). Na literatura há poucas informações sobre a contribuição dos compostos fenólicos ligados, cujos teores são costumeiramente subestimados. Os CFT foram quantificados pelo método de Folin-Ciocalteau, enquanto os ácidos fenólicos por RP-HPLC. Na fração solúvel dos genótipos pigmentados, os teores de CFT foram variáveis, mas, em média, 5,7 vezes maiores do que nos não pigmentados (média de 3468 e 602 µg eq. Ácido Ferúlico (AF)/g arroz, respectivamente), principalmente devido à presença de antocianinas e proantocianidinas. Na fração insolúvel, os pigmentados apresentaram duas vezes mais CFT do que os não pigmentados (825 e 378 µg eq. AF/g arroz, respectivamente), provavelmente devido à retenção de antocianinas e proantocianidinas, mesmo após cinco extrações consecutivas. Dentre os ácidos fenólicos, o ácido ferúlico foi o principal componente em todos os genótipos estudados, exceto no arroz preto, no qual predominou o ácido protocatecóico.
Resumo:
The common bean (Phaseolus vulgaris L.) is a staple food in the Brazilian diet and represents the major source of dietary protein and other micronutrients and minerals. Despite the considerable protein concentration in beans, the food is considered of low biological value when compared to animal proteins and other plant protein sources. To improve the availability of protein in beans, enzymatic treatments were performed in four cultivars (ON, OPNS, TAL and VC3). The approach was a completely randomized design with four replicates. We used a 4 × 3 factorial arrangement (four cultivars and three treatments: treatment 1-addition of commercial protease (Trypsin 250, Difco), treatment 2-addition of protease from Bacillus sp., and treatment 3:-control without enzyme addition). The enzyme: substrate ratio was 5% w/w (amount of enzyme per total protein in bean flour). The approach was a completely randomized design with four replicates. A 4 × 3 factorial arrangement (four cultivars and three treatments, the same as those mentioned above) was used. The concentration of total protein (g.100 g-1 of dry matter) in the samples ranged from 16.94 to 18.06%, while the concentration of total phenolics was between 0.78 and 1.12% (g Eq. tannic acid.100 g-1 dry matter). The in vitro protein digestibility of enzymatically untreated bean flour (control) ranged from 47.30 to 56.17% based on the digestibility of casein. Concentrations of P, K, Ca, Mg, and Zn observed in the four cultivars tested were within the average values available in the literature. Treatment 2 with protease from Bacillus sp. induced decreases in the levels of Cu and Mn. The average Fe content increased in all bean flour samples when treated with proteases, reaching a maximum increase of 102% in the TAL flour treated with protease from Bacillus sp. The digestibility of all beans tested was significantly increased (p < 0.05) after the enzyme treatment. The greatest change was observed in the OPNS cultivar treated with protease from Bacillus sp., which increased its digestibility from 54.4% (control treatment) to 81.6%.
Resumo:
This study aimed to investigate the nutritional quality and bioactive potential of partially defatted baru (Dipteryx alataVog.) almond flour (BAF). The flour’s proximate and mineral compositions, total phenolic, tocopherols and carotenoids contents, antioxidant capacity, trypsin inhibitor and amino acid analyses were performed. An experiment was conducted with 24 male Wistar rats in order to evaluate the flour’s protein quality. BAF has high protein, fiber and mineral contents (iron, zinc, magnesium and copper), and it is a source of calcium. BAF presented relevant amounts of total phenolics (625 mg/100g) and good antioxidant capacity (130 µmol/Trolox eq). Autoclaved BAF showed essential amino acids profile, digestibility and protein quality better than in natura BAF. Autoclaved BAF might be used for human consumption as a source of quality protein and bioactive compounds, in healthy diets and processed foods.