47 resultados para EPITHELIAL NA CHANNEL
Resumo:
Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL)-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.
Resumo:
Current schistosomiasis control strategies are largely based on chemotherapeutic agents and a limited number of drugs are available today. Praziquantel (PZQ) is the only drug currently used in schistosomiasis control programs. Unfortunately, this drug shows poor efficacy in patients during the earliest infection phases. The effects of PZQ appear to operate on the voltage-operated Ca2+channels, which are located on the external Schistosoma mansoni membrane. Because some Ca2+channels have dihydropyridine drug class (a class that includes nifedipine) sensitivity, an in vitro analysis using a calcium channel antagonist (clinically used for cardiovascular hypertension) was performed to determine the antischistosomal effects of nifedipine on schistosomula and adult worm cultures. Nifedipine demonstrated antischistosomal activity against schistosomula and significantly reduced viability at all of the concentrations used alone or in combination with PZQ. In contrast, PZQ did not show significant efficacy when used alone. Adult worms were also affected by nifedipine after a 24 h incubation and exhibited impaired motility, several lesions on the tegument and intense contractility. These data support the idea of Ca2+channels subunits as drug targets and favour alternative therapeutic schemes when drug resistance has been reported. In this paper, strong arguments encouraging drug research are presented, with a focus on exploring schistosomal Ca2+channels.
Resumo:
Developing thymocytes interact with thymic epithelial cells (TECs) through cell-cell interactions, TEC-derived secretory moieties and extracellular matrix (ECM)-mediated interactions. These physiological interactions are crucial for normal thymocyte differentiation, but can be disrupted in pathological situations. Indeed, there is severe thymic atrophy in animals acutely infected with Trypanosoma cruzi due to CD4+CD8+ thymocyte depletion secondary to caspase-mediated apoptosis, together with changes in ECM deposition and thymocyte migration. We studied an in vitro model of TEC infection by T. cruzi and found that infected TEC cultures show a reduced number of cells, which was likely associated with decreased proliferative capacity, but not with increased cell death, as demonstrated by bromodeoxyuridine and annexin-V labelling. The infected TEC cultures exhibited increased expression of fibronectin (FN), laminin (LM) and type IV collagen. Importantly, treatment with FN increased the relative number of infected cells, whereas treatment with anti-FN or anti-LM antibodies resulted in lower infection rates. Consistent with these data, we observed increased thymocyte adhesion to infected TEC cultures. Overall, these results suggest that ECM molecules, particularly FN, facilitate infection of the thymic epithelium and that the consequent enhancement of ECM expression might be associated with changes in TEC-thymocyte interactions.
Resumo:
The fungal strain Paracoccidioides brasiliensisremains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensismolecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensisuses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis.
Resumo:
OBJECTIVE: To evaluate a comprehensive MRI protocol that investigates for cancer, vascular disease, and degenerative/inflammatory disease from the head to the pelvis in less than 40 minutes on a new generation 48-channel 3T system. MATERIALS AND METHODS: All MR studies were performed on a 48-channel 3T MR scanner. A 20-channel head/neck coil, two 18-channel body arrays, and a 32-channel spine array were employed. A total of 4 healthy individuals were studied. The designed protocol included a combination of single-shot T2-weighted sequences, T1-weighted 3D gradient-echo pre- and post-gadolinium. All images were retrospectively evaluated by two radiologists independently for overall image quality. RESULTS: The image quality for cancer was rated as excellent in the liver, pancreas, kidneys, lungs, pelvic organs, and brain, and rated as fair in the colon and breast. For vascular diseases ratings were excellent in the aorta, major branch vessel origins, inferior vena cava, portal and hepatic veins, rated as good in pulmonary arteries, and as poor in the coronary arteries. For degenerative/inflammatory diseases ratings were excellent in the brain, liver and pancreas. The inter-observer agreement was excellent. CONCLUSION: A comprehensive and time efficient screening for important categories of disease processes may be achieved with high quality imaging in a new generation 48-channel 3T system.
Resumo:
PURPOSES: To determine the basic expression of ABC transporters in an epithelial ovarian cancer cell line, and to investigate whether low concentrations of acetaminophen and ibuprofen inhibited the growth of this cell line in vitro. METHODS: TOV-21 G cells were exposed to different concentrations of acetaminophen (1.5 to 15 μg/mL) and ibuprofen (2.0 to 20 μg/mL) for 24 to 48 hours. The cellular growth was assessed using a cell viability assay. Cellular morphology was determined by fluorescence microscopy. The gene expression profile of ABC transporters was determined by assessing a panel including 42 genes of the ABC transporter superfamily. RESULTS: We observed a significant decrease in TOV-21 G cell growth after exposure to 15 μg/mL of acetaminophen for 24 (p=0.02) and 48 hours (p=0.01), or to 20 μg/mL of ibuprofen for 48 hours (p=0.04). Assessing the morphology of TOV-21 G cells did not reveal evidence of extensive apoptosis. TOV-21 G cells had a reduced expression of the genes ABCA1, ABCC3, ABCC4, ABCD3, ABCD4 and ABCE1 within the ABC transporter superfamily. CONCLUSIONS: This study provides in vitro evidence of inhibitory effects of growth in therapeutic concentrations of acetaminophen and ibuprofen on TOV-21 G cells. Additionally, TOV-21 G cells presented a reduced expression of the ABCA1, ABCC3, ABCC4, ABCD3, ABCD4 and ABCE1 transporters.
Resumo:
A VDAC é a proteÃna mais abundante na membrana mitocondrial externa. Exerce o controle da atividade desta organela através da regulação da troca de metabólitos e tem função crucial no mecanismo de apoptose. Em nosso caso, os estudos dos complexos protéicos, das interações entre a VDAC e outras proteÃnas presentes no interior do neurônio que auxiliam na manutenção das funções das organelas e da célula, fazem parte da chamada interactômica. O presente estudo determinou o interactoma do complexo protéico Hexoquinase-VDAC-ANT presente em cérebros murino, bovino e aviar. Nosso objetivo foi identificar se as expressões diferenciadas da VDAC1 e VDAC2 verificadas nos cérebros murino, aviar e bovino, estão associadas a diferenças nos interactomas dessas proteÃnas. Este estudo revelou que as espécies aviar e bovina apresentaram o maior número de complexos protéicos contendo VDACs (5) quando comparadas com os neurônios de rato (1), o que é indicativo de uma cinética diferencial de montagem ou desmontagem do complexo. Além disso, a VDAC mitocondrial neuronal aviar também interage com mais proteÃnas em relação à VDAC mitocondrial neuronal bovina, o que é resultado de uma composição de subunidades diferenciada. Tais resultados indicam diferenças significativas quanto ao metabolismo energético e apoptótico no cérebro aviar, bovino e murino, existindo interações diferenciais da VDAC no cérebro aviar.
Resumo:
The vasorelaxant effects of SR 47063 (4-(2-cyanimino-1,2-dihydropyrid-1-yl)-2,2-dimethyl-6-nitrochromene), a new K+-channel opener structurally related to levcromakalim, were examined in isolated human saphenous vein (HSV) and rat aorta (RA). HSV or RA rings were precontracted with either KCl or noradrenaline and cumulative relaxant concentration-response curves were obtained for SR 47063 (0.1 nM to 1 µM) in the presence or absence of 3 µM glibenclamide. SR 47063 potently relaxed HSV and RA precontracted with 20 mM (but not 60 mM) KCl or 10 µM noradrenaline in a concentration-dependent manner, showing slightly greater activity in the aorta. The potency of the effect of SR 47063 on HSV and RA was 12- and 58-fold greater, respectively, than that reported for the structurally related K+-channel opener levcromakalim. The vasorelaxant action of SR 47063 in both blood vessels was strongly inhibited by 3 µM glibenclamide, consistent with a mechanism of action involving ATP-dependent K+-channels.
Resumo:
Nephrolithiasis is one of the most common diseases in the Western world. The disease manifests itself with intensive pain, sporadic infections, and, sometimes, renal failure. The symptoms are due to the appearance of urinary stones (calculi) which are formed mainly by calcium salts. These calcium salts precipitate in the renal papillae and/or within the collecting ducts. Inherited forms of nephrolithiasis related to chromosome X (X-linked hypercalciuric nephrolithiasis or XLN) have been recently described. Hypercalciuria, nephrocalcinosis, and male predominance are the major characteristics of these diseases. The gene responsible for the XLN forms of kidney stones was cloned and characterized as a chloride channel called ClC-5. The ClC-5 chloride channel belongs to a superfamily of voltage-gated chloride channels, whose physiological roles are not completely understood. The objective of the present review is to identify recent advances in the molecular pathology of nephrolithiasis, with emphasis on XLN. We also try to establish a link between a chloride channel like ClC-5, hypercalciuria, failure in urine acidification and protein endocytosis, which could explain the symptoms exhibited by XLN patients.
Resumo:
Corneal transparency is attributed to the regular spacing and diameter of collagen fibrils, and proteoglycans may play a role in fibrillogenesis and matrix assembly. Corneal scar tissue is opaque and this opacity is explained by decreased ultrastructural order that may be related to proteoglycan composition. Thus, the objectives of the present study were to characterize the proteoglycans synthesized by human corneal explants and to investigate the effect of mechanical epithelial debridement. Human corneas unsuitable for transplants were immersed in F-12 culture medium and maintained under tissue culture conditions. The proteoglycans synthesized in 24 h were labeled metabolically by the addition of 35S-sulfate to the medium. These compounds were extracted by 4 M GuHCl and identified by a combination of agarose gel electrophoresis, enzymatic degradation with protease and mucopolysaccharidases, and immunoblotting. Decorin was identified as the main dermatan sulfate proteoglycan and keratan sulfate proteoglycans were also prominent components. When the glycosaminoglycan side chains were analyzed, only keratan sulfate and dermatan sulfate were detected (~50% each). Nevertheless, when these compounds were 35S-labeled metabolically, the label in dermatan sulfate was greater than in keratan sulfate, suggesting a lower synthesis rate for keratan sulfate. 35S-Heparan sulfate also appeared. The removal of the epithelial layer caused a decrease in heparan sulfate labeling and induced the synthesis of dermatan sulfate by the stroma. The increased deposit of dermatan sulfate proteoglycans in the stroma suggests a functional relationship between epithelium and stroma that could be related to the corneal opacity that may appear after epithelial cell debridement.
Resumo:
The aim of the present study was to evaluate the acidification of the endosome-lysosome system of renal epithelial cells after endocytosis of two human immunoglobulin lambda light chains (Bence-Jones proteins, BJP) obtained from patients with multiple myeloma. Renal epithelial cell handling of two BJP (neutral and acidic BJP) was evaluated by rhodamine fluorescence. Renal cells (MDCK) were maintained in culture and, when confluent, were incubated with rhodamine-labeled BJP for different periods of time. Photos were obtained with a fluorescence microscope (Axiolab-Zeiss). Labeling density was determined on slides with a densitometer (Shimadzu Dual-Wavelength Flying-Spot Scanner CS9000). Endocytosis of neutral and acidic BJP was correlated with acidic intracellular compartment distribution using acridine orange labeling. We compared the pattern of distribution after incubation of native neutral and acidic BJP and after complete deglycosylation of BJP by periodate oxidation. The subsequent alteration of pI converted neutral BJP to acidic BJP. There was a significant accumulation of neutral BJP in endocytic structures, reduced lysosomal acidification, and a diffuse pattern of acidification. This pattern was reversed after total deglycosylation and subsequent alteration of the pI to an acidic BJP. We conclude that the physicochemical characteristics of BJP interfere with intracellular acidification, possibly explaining the strong nephrotoxicity of neutral BJP. Lysosomal acidification is fundamental for adequate protein processing and catabolism.
Resumo:
Ischemic pain occurs when there is insufficient blood flow for the metabolic needs of an organ. The pain of a heart attack is the prototypical example. Multiple compounds released from ischemic muscle likely contribute to this pain by acting on sensory neurons that innervate muscle. One such compound is lactic acid. Here, we show that ASIC3 (acid-sensing ion channel #3) has the appropriate expression pattern and physical properties to be the detector of this lactic acid. In rats, it is expressed only in sensory neurons and then only on a minority (~40%) of these. Nevertheless, it is expressed at extremely high levels on virtually all dorsal root ganglion sensory neurons that innervate the heart. It is extraordinarily sensitive to protons (Hill slope 4, half-activating pH 6.7), allowing it to readily respond to the small changes in extracellular pH (from 7.4 to 7.0) that occur during muscle ischemia. Moreover, both extracellular lactate and extracellular ATP increase the sensitivity of ASIC3 to protons. This final property makes ASIC3 a "coincidence detector" of three molecules that appear during ischemia, thereby allowing it to better detect acidosis caused by ischemia than other forms of systemic acidosis such as hypercapnia.
Resumo:
We have shown that myocardial dysfunction induced by food restriction is related to calcium handling. Although cardiac function is depressed in food-restricted animals, there is limited information about the molecular mechanisms that lead to this abnormality. The present study evaluated the effects of food restriction on calcium cycling, focusing on sarcoplasmic Ca2+-ATPase (SERCA2), phospholamban (PLB), and ryanodine channel (RYR2) mRNA expressions in rat myocardium. Male Wistar-Kyoto rats, 60 days old, were submitted to ad libitum feeding (control rats) or 50% diet restriction for 90 days. The levels of left ventricle SERCA2, PLB, and RYR2 were measured using semi-quantitative RT-PCR. Body and ventricular weights were reduced in 50% food-restricted animals. RYR2 mRNA was significantly decreased in the left ventricle of the food-restricted group (control = 5.92 ± 0.48 vs food-restricted group = 4.84 ± 0.33, P < 0.01). The levels of SERCA2 and PLB mRNA were similar between groups (control = 8.38 ± 0.44 vs food-restricted group = 7.96 ± 0.45, and control = 1.52 ± 0.06 vs food-restricted group = 1.53 ± 0.10, respectively). Down-regulation of RYR2 mRNA expressions suggests that chronic food restriction promotes abnormalities in sarcoplasmic reticulum Ca2+ release.
Resumo:
The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a). To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT) of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB) inhibitor aspirin while not affected by the reactive oxygen species (ROS) scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.