40 resultados para ENERGY-PRODUCTION
Resumo:
Citrus orchards are very important in Brazil, especially in São Paulo State, where occupy an area of 600,000 ha approximately. To identify sustainability degree of citrus production system, an energy analysis allows evaluating efficiency of direct and indirect applied inputs. Thus, this study aimed to evaluate citrus production system under energetic point of view, in which invested energy is paid back with citrus production; being compared within three scenarios for operational field efficiency. As result, by sensitivity analysis was determined that fuel was the main energy demander, followed by pesticides and fertilizers. In operational work capacity analysis, all combinations between efficiency (minimum, typical and maximum) and yield levels became positive in the seventh year, except for the combination minimum efficiency and 10 % less yield, positive in the eighth year. The best combination (maximum efficiency and 10 % more yield) has promoted investment payoff around the sixth and seventh year. By this study, it is possible to determine the total energy demand to produce citrus and indentify the applied inputs that need more attention by the decision-makers. Labor and seedlings can be ommited for further studies with citrus, since they were irrelevant. Management of agricultural machinery may pose an important role on decreasing environmental impact of citrus production.
Resumo:
Protein energy malnutrition (PEM) is a syndrome that often results in immunodeficiency coupled with pancytopenia. Hemopoietic tissue requires a high nutrient supply and the proliferation, differentiation and maturation of cells occur in a constant and balanced manner, sensitive to the demands of specific cell lineages and dependent on the stem cell population. In the present study, we evaluated the effect of PEM on some aspects of hemopoiesis, analyzing the cell cycle of bone marrow cells and the percentage of progenitor cells in the bone marrow. Two-month-old male Swiss mice (N = 7-9 per group) were submitted to PEM with a low-protein diet (4%) or were fed a control diet (20% protein) ad libitum. When the experimental group had lost about 20% of their original body weight after 14 days, we collected blood and bone marrow cells to determine the percentage of progenitor cells and the number of cells in each phase of the cell cycle. Animals of both groups were stimulated with 5-fluorouracil. Blood analysis, bone marrow cell composition and cell cycle evaluation was performed after 10 days. Malnourished animals presented anemia, reticulocytopenia and leukopenia. Their bone marrow was hypocellular and depleted of progenitor cells. Malnourished animals also presented more cells than normal in phases G0 and G1 of the cell cycle. Thus, we conclude that PEM leads to the depletion of progenitor hemopoietic populations and changes in cellular development. We suggest that these changes are some of the primary causes of pancytopenia in cases of PEM.
Resumo:
The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 x 10(4) cells/mL) compared to control (69.6 ± 7.1 x 10(4) cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h-1·mL-1), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h-1·mL-1, 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM.
Resumo:
Energy expenditure was measured by indirect calorimetry in 17 adult patients (8 women and 9 men) before surgery, 4 hours immediately after surgery , and 24 hours late after surgery in patients undergoing elective surgery of small-to-medium scope. MATERIAL AND METHODS: The total duration of surgery ranged from 2 to 3 hours. Repeated measures were performed on the same patient, so that each patient was considered to be his/her own control. All patients received a 5% dextrose solution (2000 mL/day) throughout the postoperative period. RESULTS: Men showed a reduction in CO2 production during the immediately after surgery period (257±42 mL/min) compared to before surgery (306±48 mL/min) and late after surgery (301±45 mL/min); this reduction was not observed in women. Energy expenditure was also lower in men during immediately after surgery (6.6 kJ/min). None of the other measurements, including substrate oxidation, showed significant differences. CONCLUSION: Therefore, elective surgery itself cannot be considered an important trauma that would result in increased energy expenditure. According to this study, it is not necessary to prescribe an energy supply exceeding basal expenditure during the immediate after-surgery period. The present results suggest that the energy supply prescribed during the postoperative period after elective surgery of small-to-medium scope should not exceed 5-7 kJ/min, so the patient does not receive a carbohydrate overload from energy supplementation.
Resumo:
Charcoal is an important energy raw material and its properties are influenced by the wood's anatomical and chemical composition and the production process. The aim of this study was to evaluate the anatomical characteristics, calorific power and volatiles and ash content of carbonized wood from Byrsonima spicata, Calophyllum brasiliense, Cecropia sciadophylla, Cochlospermum orinocense and Schefflera morototoni. The calorific power varied from 26,878 to 31,117 kJ kg-1; the content of volatile materials ranged from 20.9 to 31.7%; ash content ranged from 0.1 to 3.8%; and carbon content varied from 68.2 to 75.3%. Anatomical structures of charcoal can be used for species identification. The studied species are not indicated for charcoal production because the levels of ash and volatile compounds are higher than those recommended for charcoal produced for household use. In addition, the calorific power and level of carbon content are insufficient for use in the steel industry.
Resumo:
Species of Chydoridae provide the main diversity of the Cladocera. These organisms have been the subject of many studies; some dealing with their role in energy flow in aquatic ecosystems, since they inhabit the littoral region of water bodies which undergo the first impacts from anthropic activities. The aim of this study is to increase knowledge about the life cycle of Coronatella rectangula (Sars, 1861), a species found in several water bodies in the state of Minas Gerais, Brazil. The life cycle was determined by the culture of parthenogenetic females under controlled conditions in the laboratory. Experimental cultures were maintained in growth chambers at a constant temperature of 23.6(±0.5)ºC, through a 12 h light/12 h dark photoperiod. The organisms were fed on a suspension of Pseudokirchneriella subcapitata (Chlorophyceae) (10(5) cells.mL-1), and 0.02 mL of a mixed suspension of yeast and fish ration added per organism in equal proportions (1:1). Fifty parthenogenetic females with eggs were isolated and maintained until they produced neonates. Thirty of these neonates that had less than 24 hours were put in polypropylene bottles of 50 mL and kept in a germination chamber. These organisms were observed daily to obtain the parameters of the life cycle. Biomass and secondary production were also calculated. The embryonic development time of the specimens of C. rectangula was 1.68(±0.13) days and the time to reach primipara, was 2.48(±0.45) days. The mean fecundity of C. rectangula was two eggs/female/brood and the total number of eggs produced by the female during its life cycle was 27.8 eggs. During the whole life cycle, specimens of C. rectangula had a maximum of 14 seedlings, with two instars in the juvenile stage. Total biomass for C. rectangula was 36.66 µgDW.m-3(9.83 for the juvenile stage and 26.82 µgDW.m-3 for adults), and secondary production was 12.10 µgDW.m-3.day-1(8.34 µgDW.m-3.day-1 for egg production and 3.76 µgDW.m-3.day-1 for the juvenile stage).
Resumo:
Studies testing the High Energy Moisture Characteristic (HEMC) technique in tropical soils are still incipient. By this method, the effects of different management systems can be evaluated. This study investigated the aggregation state of an Oxisol under coffee with Brachiaria between crop rows and surface-applied gypsum rates using HEMC. Soil in an experimental area in the Upper São Francisco region, Minas Gerais, was studied at depths of 0.05 and 0.20 m in coffee rows. The treatments consisted of 0, 7, and 28 Mg ha-1 of agricultural gypsum rates distributed on the soil surface of the coffee rows, between which Brachiaria was grown and periodically cut, and compared with a treatment without Brachiaria between coffee rows and no gypsum application. To determine the aggregation state using the HEMC method, soil aggregates were placed in a Büchner funnel (500 mL) and wetted using a peristaltic pump with a volumetric syringe. The wetting was applied increasingly at two pre-set speeds: slow (2 mm h-1) and fast (100 mm h-1). Once saturated, the aggregates were exposed to a gradually increasing tension by the displacement of a water column (varying from 0 to 30 cm) to obtain the moisture retention curve [M = f (Ψ) ], underlying the calculation of the stability parameters: modal suction, volume of drainable pores (VDP), stability index (slow and fast), VDP ratio, and stability ratio. The HEMC method conferred sensitivity in quantifying the aggregate stability parameters, and independent of whether gypsum was used, the soil managed with Brachiaria between the coffee rows, with regular cuts discharged in the crop row direction, exhibited a decreased susceptibility to disaggregation.
Resumo:
The objective of this work was to evaluate the carbonization yield of babassu nutshell as affected by final temperature, as well as the energy losses involved in the process. Three layers constituting the babassu nut, that is, the epicarp, mesocarp and endocarp, were used together. The material was carbonized, considering the following final temperatures: 450, 550, 650, 750, and 850ºC. The following were evaluated: energy and charcoal yields, pyroligneous liquid, non-condensable gases, and fixed carbon. The use of babassu nutshell can be highly feasible for charcoal production. The yield of charcoal from babassu nutshell carbonization was higher than that reported in the literature for Eucalyptus wood carbonization, considering the final temperature of 450ºC. Charcoal and energy yields decreased more sharply at lower temperatures, with a tendency to stabilize at higher temperatures. The energy yields obtained can be considered satisfactory, with losses between 45 and 52% (based on higher heating value) and between 43 and 49% (based on lower heating value) at temperatures ranging from 450 to 850ºC, respectively. Yields in fixed carbon and pyroligneous liquid are not affected by the final carbonization temperature.
Resumo:
In the last 30 years world population has increased 70% but per capita global fruit consumption is only 20% higher. Even though tropical and temperate fruit have similar contributions to the 50 kg/person/year of US consumption of fresh fruit, in the last 30 years this has been slightly greater for temperate fruit. Within fruit consumption, the largest expansion has been for organic fruit which increased more than 50% in the 2002-2006 period. The largest expansion of area planted in the 1996-2006 has been for kiwi (29%) and blueberries (20%), while apples (-24%) and sour cherries (-13%) have had the largest reductions. Nearly 50% of the total global volume of fruit is produced by 5 countries: China, USA, Brazil, Italy and Spain. The main producer (China) accounts for 23% of the total. While the main exporters are Spain, USA and Italy, the main importers are Germany, Russia and UK. Demands for the industry have evolved towards quality, food safety and traceability. The industry faces higher productions costs (labor, energy, agrichemicals). The retailers are moving towards consolidation while the customers are changing preferences (food for health). In this context there is greater pressure on growers, processors and retailers. Emerging issues are labor supply, climate change, water availability and sustainability. Recent developments in precision agriculture, molecular biology, phenomics, crop modelling and post harvest physiology should increase yields and quality, and reduce costs for temperate fruit production around the world.
Resumo:
In 2007 (the last agricultural census), Chile had 308, 445 ha of fruit orchards: an increase of almost 32% from the previous census (1997). The most important species were table grapes (20%), avocados (13%) and apples (12%). Some 22% of the fruit crops growing area corresponded to juvenile orchards; within the species with higher proportion of juvenile orchards were prunes (42%) and blueberries (56%). Most orchards are located between latitude 27º18` S (Copiapó) and 40º36´S (Puerto Varas). The industry is driven by the export component which accounts for more than 50% of the fruits produced. In the crop season 2009-2010, approximately 254 million boxes (around 2.5 million tons) were exported, representing over US$ 3.5 million. Processed and fresh fruits represented 8.2 and 26.7% of the total forest and agricultural Chilean exports in 2008, respectively. The main markets for this fruits were USA/Canada (42%) and Europe (32%). The fruit grower receives, on average, 12-16% of the total price of the fruit in its final destination. Each year the fruit industry employs 450.000 people directly, of which 1/3 are permanent. Even though the fruit industry employs the highest proportion of the agricultural labor and the growing area has increased in the last 20 years, the proportion of agricultural employment has decreased from 19.5% in 1989 to 10.8% in 2008. It might also be noted that Chile invests only 0.7% of the GDP in research. In the last 40 years, the fruit industry has been a motor for the Chilean economic development, but the lower rates of currency exchange, the rising costs of energy (oil, electricity), and the increasing scarcity of hand labor have drastically reduced the profitability and are putting at risk the viability of a large proportion of the fruit orchards in Chile. It is estimated that this season around 65% of the orchards will have a negative economic balance in their operations. Higher investment in research, improvements in fruit quality and various orchard management practices, as well as higher financial support from the Government are needed for the long term viability of the fruit industry in Chile.
Resumo:
Agronomic biomass yields of forage sorghum BRS 655 presented similar results to other energy crops, producing 9 to 12.6 tons/ha (dry mass) of sorghum straw. The objective of this study was to evaluate the lignocellulosic part of this cultivar in terms of its potential in the different unit processes in the production of cellulosic ethanol, measuring the effects of pretreatment and enzymatic hydrolysis. Three types of pre-treatments for two reaction times were conducted to evaluate the characteristics of the pulp for subsequent saccharification. The pulp pretreated by alkali, and by acid followed by delignification, attained hydrolysis rates of over 90%.
Resumo:
Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport) are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.
Resumo:
The aim of this work was to evaluate the energy flows of a commercial production system of swine deep bed in its finishing phase, located in Juiz de Fora, in the State of Minas Gerais, Brazil. Thus, an energy efficiency study was carried out by monitoring a lot of animals, during a 94-day period. The energy rate of each compound involved in the production process was quantified and the matrixes of energy consumption were determined in the form of animal feeding, electrical energy, piglets, material used as deep bed, human labor, equipment, swine buildings, production of alive swine for slaughter, organic fertilizer production (swine deep bed or swine deep litter). From the direct input energy, 80.57% correspond to animal feeding, 11.90% to pigs for slaughter and 6.76% to piglets, while from the energy output 53.45% correspond to the terminating swine and 46.55% to organic fertilizer (swine deep bed). By the results obtained, we can conclude that such production system has corresponded to an industrial and highly specialized agro ecosystem, importing a great part of the energy consumed in the production process, with 41% of energy efficiency.
Resumo:
Modern swine production faces many challenges nowadays, among which are productivity growth, meat quality improvement, decrease of environmental damage and reduction of cost production. Pigs spend energy to vocalizing, especially when they undergo stress. The waste of energy can increase the cost of production and lead to greater environmental damage. The goal of this study was to estimate the energy spent by pigs under the stress of castration and its effect on the animals' weight gain. Two groups of ten animals each were castrated, being one group with local anesthetic and the other without anesthetic. The piglets' vocalizations were recorded during different stages of the neutering process and then estimated of the amount of energy emitted during each vocalization. Afterwards, this energy was associated with the animals' weight gain. There was no difference in the total energy spent in both groups, since the energy used during the application of anesthetic was similar to the energy spent during the castration of the animals without anesthetic. There was also no correlation between energy spent and the animals' weight gain. It was possible to estimate the amount of energy emitted through vocalization. This energy spent by piglets in pain was greater than in other handling situations (contention, weighting and realease).
Resumo:
Light emitting diode (LED) has been used in commercial poultry industry by presenting superior energy savings and providing feasibility on production process. The objective of this research was to evaluate performance and carcass yield of broiler chickens exposed to different LED colors compared with fluorescent lamps. For that, two experiments (E1 and E2) were performed and 2,646 Cobb® chickens were used. In experiment E1, male birds were exposed to 20 lux artificial lighting with red, yellow, blue, and white LED bulbs; and fluorescent bulb. In experiment E2, male and female birds were exposed to 15 lux artificial lighting with red and blue LED bulbs; and fluorescent bulb. Cumulative weight gain (kg), feed intake (kg), feed conversion, hot carcass weight (kg), carcass yield (%), and breast and thigh + drumstick yield (%) were used as response variables. Results showed no difference (p > 0.05) among treatments for performance, carcass yield, and cut yield in experiment E1. In experiment E2 there was only difference between genders (p < 0.05) and males showed higher total weight gain, feed intake, hot carcass weight and thigh + drumstick yield. Different LED color use had same effect as fluorescent lights on broiler performance and carcass yield.