27 resultados para EDIBLE FILMS
Resumo:
In this study, folates were evaluated in the main species of mushroom cultivated in Brazil. The species analysed were Agaricus bisporus (button mushroom), Lentinula edodes (shiitake) and Pleorotus ostreatus (shimeji). The five main forms of folate found in foods were determined: tetrahydrofolic acid (THFA), 10-methyl folic acid (10MFA), 5-methyl tetrahydrofolic acid (5MTHFA), 10-formyl folic acid (10FFA) and 5-formy tetrahydrofolic acid (5FTHFA). The methodology employed used extraction with phosphate buffer, clean up with trichloroacetic acid and separation of the vitamins by high-performance liquid chromatography, with simultaneous ultraviolet and fluorescence detection. The results obtained for total folate were 551 to 1404 µg.100 g -1 for the button mushroom, 606 to 727 µg.100 g -1 for shiitake and 460 to 1325 µg.100 g-1 for shimeji. The data showed that mushrooms could be considered as sources of folates and that their contribution of these vitamins to the diet was meaningful.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C PVA) of two types of poly (vinyl alcohol) (PVA) and the effect of the type and the concentration of plasticizers on the phase properties of biodegradable films based on blends of gelatin and PVA, using a response-surface methodology. The films were made by casting and the studied properties were their glass (Tg) and melting (Tm) transition temperatures, which were determined by diferential scanning calorimetry (DSC). For the data obtained on the first scan, the fitting of the linear model was statistically significant and predictive only for the second melting temperature. In this case, the most important effect on the second Tm of the first scan was due to the HD of the PVA. In relation to the second scan, the linear model could be fit to Tg data with only two statistically significant parameters. Both the PVA and plasticizer concentrations had an important effect on Tg. Concerning the second Tm of the second scan, the linear model was fit to data with two statistically significant parameters, namely the HD and the plasticizer concentration. But, the most important effect was provoked by the HD of the PVA.
Resumo:
In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.
Resumo:
In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG) and Differential Scanning Calorimetry (DSC) analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene), BHA (2, 3-tert-butyl-4-methoxyphenol), TBHQ (tertiary butyl hydroquinone), PG (propyl gallate) - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate) additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.
Resumo:
Mimic biological structures such as the cell wall of plant tissues may be an alternative to obtain biodegradable films with improved mechanical and water vapor barrier properties. This study aims to evaluate the mechanical properties and water vapor permeability (WVP) of films produced by using the solvent-casting technique from blended methylcellulose, glucomannan, pectin and gelatin. First, films from polysaccharides at pH 4 were produced. The film with the best mechanical performance (tensile strength = 72.63 MPa; elongation = 9.85%) was obtained from methylcellulose-glucomannan-pectin at ratio 1:4:1, respectively. Then, gelatin was added to this polysaccharide blend and the pH was adjusted to 4, 5 and 6. Results showed significant improvement in WVP when films were made at pH 5 and at polysaccharides/gelatin ratio of 90/10 and 10/90, reaching 0.094 and 0.118 g.mm/h.m².kPa as values, respectively. Films with the best mechanical properties were obtained from the blend of polysaccharides, whereas WVP was improved from the blend of polysaccharides and gelatin at pH 5.
Resumo:
The coating of papayas with Cassava Starch (CS) and carboxymethyl starch (CMS) is an alternative to extend the shelf life of these fruits. This study evaluated the effect of the three different levels of CS and CMS (1, 3, and 5%) on sensory characteristics of papayas during storage. Nine selected and trained assessors evaluated 13 sensory attributes using the Multiple Comparison Test. The appearance and flavor attributes of the papayas treated with CS and CMS were compared to the control or reference sample (R - fruit without coating) using a nine-point scale, which varied from 1: less intense than R; 5: equal to R; 9: more intense than R. The samples were coded with three digit numbers and evaluated with repetition by a panel of assessors. In general, appearance was more affected by the coatings than flavor. Fruits coated with 3 and 5% of both coatings kept the green color longer than the other coatings concentrations, and at 5% the color of the fruits was less uniform on the last evaluation day. The 3 and 5% CS coating gave greater brightness to the fruits. 5% CMS favored the presence of fungi and damaged the fruit surface at the 14th day of storage. The CS coating at 5% presented peeled surface during all experimental time. Changes in fruits flavor were perceived at the 12th and 14th days of storage. A less characteristic flavor and a bitter taste were noticed in the fruits coated with CS and CMS at 5% at the 12th day of storage.
Resumo:
The aim of this study was to evaluate the physical and chemical parameters of Williams pear, stored at 25 ºC for 15 days, with and without edible coating. Edible coatings prepared with alginate 2% and carrageenan 0.5% were tested. The analyses carried out on the samples were: weight loss, pH, soluble solids, firmness, and color. The edible coatings were characterized in terms of mechanical properties, permeability, thickness, and opacity. The results show that the application of edible coatings with carrageenan and alginate in pears influenced physical and chemical characteristics such as weight loss, pH, total soluble solids, color, and firmness of the fruit. However, the alginate coating showed the best results on pear conservation since it had lower water vapor permeability and greater tensile strength, and therefore it can be used as a protective film on these fruits.
Resumo:
Jaboticaba is a Brazilian fruit, native to the Atlantic forest, which belongs to the Myrtaceae family. In this work we describe the effect of the thinning of "flower", "fruit" and "flower & fruit" compared to non-thinned fruit (control) and of edible coatings with respect on nutritional composition, overall acceptability and shelf-life of jaboticaba ‘Sabara’, grown in an irrigated commercial orchard. "Flower and fruit" thinning allows fruit with higher quality as diameter, volume and mass. Non-thinned fruit shows higher yield, however fruit have lower quality. As a result of the improving quality at harvest, the shelf life was twice (~8 days) for thinned fruit. The lack of change in concentration of soluble sugar and absence of formation of volatile compounds during storage indicate that there was no natural fermentation of the jaboticaba pulp after harvest. Treatments with wax and calcium did not improve the jaboticaba shelf life.
Resumo:
This study aimed at evaluating the effect of different concentrations of hydrolyzed collagen (HC) on the properties of an orally disintegrating film containing propolis ethanol extract (PEE) as an active component. The films were evaluated in terms of total phenols, mechanical properties, solubility, contact angle, disintegration time, and microstructure. The films were prepared by casting with 2 g of protein mass (gelatin and HC), 30 g of sorbitol/100 g of protein mass, and 100 g of PEE/100 g of protein mass. HC was incorporated at concentrations of 0, 10, 20, and 30 g/100 g of protein mass. It was found that increased concentrations of HC reduced tensile strength and increased elongation; however, all films showed plastic behavior. An increase in solubility at 25 ºC, a reduction in the contact angle, and disintegration time were also observed. Thus, higher concentrations of collagen led to more hydrophilic and more soluble polymeric matrices that showed shorter dissolution time, favoring the use of these materials as carriers for active compounds to be delivered in the oral cavity.
Resumo:
In order to increase the shelf life and maintain the quality and stability of the biological compounds with antioxidant activity present in Castilla blackberry fruits, a sodium alginate-based edible crosslinked coating was applied, and the fruits were packed in two different plastic containers and stored under refrigeration (3 ± 1 °C). Total antioxidant capacity and its relationship to physicochemical variables such as pH, Brix, and acidity were evaluated in six treatments: uncoated blackberry stored in a macroperforated container (T1) and thermosealed container (T2), without crosslinked coating in a macroperforated container (T3) and thermosealed container (T4), with crosslinked coating (calcium ions) packed in macroperforated container (T5) and thermosealed container (T6). The results indicated that factors such as gas permeability in the coatings, the packaging used, and physicochemical parameters significantly affected the fruit total antioxidant capacity, with the highest level in T1 (0.22 µgEAA/ml) at the end of the essay, which is related to the lowest levels of pH and direct exposure to air. On the other hand, the lowest value was obtained in T6 (0.16 µgEAA/ml) due to the crosslinked coating, packaging in the thermosealed container, and higher pH value. Variations in acidity, Brix, and pH indicate the presence of degenerative processes in the crosslinked coating treatments, which limited the physicochemical changes.
Resumo:
Abstract Fish consumption has increased in recent years. However, fish meat is highly perishable, which demonstrates the need for technologies to preserve its quality. Edible coatings (EC) might provide an alternative to extend the shelf life of fish. The goal of this study was to evaluate the effect of EC of chitosan (C) in combination with carvacrol (CAR) on the physical and microbiological changes of tilapia fillets. Fillets were submerged for two minutes in different treatments (T1: control; T2: C 2%; T3: C 2% + 0.125% CAR; T 4: C 2% + 0.25% CAR). At the end of storage, T1 and T2 showed the lowest values of total volatile bases (TVB). The color parameters L*, a* and b* varied from each treatment. The texture decreased and the different treatments reduced the microbial population in relation to the control; T3 and T4 were the most effective. These results show that the use of C with CAR might be an alternative method to preserve the quality and safety of tilapia fillets.
Resumo:
Abstract Biodegradable films blends made of safflower oil nutraceutical capsules waste corn starch (20:4, 30:4, 40:4 and 50:4) were prepared. The objective of this study was to evaluate the influence of addition of different concentrations of safflower oil nutraceutical capsule waste in the mechanical properties (tensile strength, elongation at break, Young’s modulus) and thickness of corn starch films. A decrease in tensile strength and Young’s modulus and an increase in elongation at break were observed with the increase in the content of the nutraceutical capsule waste. The results showed that the blends of safflower oil capsules waste-corn starch films demonstrated promising characteristics to form biodegradable films with different mechanical characteristics.