17 resultados para Dynamic search fireworks algorithm with covariance mutation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial mutations are responsible for at least 1% of the cases of hereditary deafness, but the contribution of each mutation has not yet been defined in African-derived or native American genetic backgrounds. A total of 203 unselected hearing-impaired patients were screened for the presence of the mitochondrial mutation A1555G in the 12S rRNA gene and mutations in the tRNA Ser(UCN) gene in order to assess their frequency in the ethnically admixed Brazilian population. We found four individuals with A1555G mutation (2%), which is a frequency similar to those reported for European-derived populations in unselected samples. On the other hand, complete sequencing of the tRNA Ser(UCN) did not reveal reported pathogenic substitutions, namely A7445G, 7472insC, T7510C, or T7511C. Instead, other rare substitutions were found such as T1291C, A7569G, and G7444A. To evaluate the significance of these findings, 110 "European-Brazilians" and 190 "African-Brazilians" unrelated hearing controls were screened. The T1291C, A7569G and G7444A substitutions were each found in about 1% (2/190) of individuals of African ancestry, suggesting that they are probably polymorphic. Our results indicate that screening for the A1555G mutation is recommended among all Brazilian deaf patients, while testing for mutations in the tRNA Ser(UCN) gene should be considered only when other frequent deafness-causing mutations have been excluded or in the presence of a maternal transmission pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In numerous motor tasks, muscles around a joint act coactively to generate opposite torques. A variety of indexes based on electromyography signals have been presented in the literature to quantify muscle coactivation. However, it is not known how to estimate it reliably using such indexes. The goal of this study was to test the reliability of the estimation of muscle coactivation using electromyography. Isometric coactivation was obtained at various muscle activation levels. For this task, any coactivation measurement/index should present the maximal score (100% of coactivation). Two coactivation indexes were applied. In the first, the antagonistic muscle activity (the lower electromyographic signal between two muscles that generate opposite joint torques) is divided by the mean between the agonistic and antagonistic muscle activations. In the second, the ratio between antagonistic and agonistic muscle activation is calculated. Moreover, we computed these indexes considering different electromyographic amplitude normalization procedures. It was found that the first algorithm, with all signals normalized by their respective maximal voluntary coactivation, generates the index closest to the true value (100%), reaching 92 ± 6%. In contrast, the coactivation index value was 82 ± 12% when the second algorithm was applied and the electromyographic signal was not normalized (P < 0.04). The new finding of the present study is that muscle coactivation is more reliably estimated if the EMG signals are normalized by their respective maximal voluntary contraction obtained during maximal coactivation prior to dividing the antagonistic muscle activity by the mean between the agonistic and antagonistic muscle activations.