64 resultados para Dorsal Premotor Cortex
Resumo:
The authors present an evidence-based case report of a patient with agenesis or pseudoagenesis of the dorsal pancreas.
Resumo:
Os seios venosos do crânio realizam a drenagem do cérebro e da medula espinhal, a fim de manter a homeostasia e o perfeito funcionamento do sistema nervoso central. Lesões na rede venosa cerebral podem causar déficits severos tais como hemiplegia, hemorragia, coma e morte. Os seios venosos são importantes pontos de referência para a realização de técnicas cirúrgicas de acesso ao cérebro. Este estudo visou analisar o trajeto do seio venoso sagital dorsal no crânio de cães braquicéfalos. Os animais braquicéfalos possuem crânios curtos e com características biométricas específicas. Foram utilizados 8 crânios de cães da raça Boxer, que foram submetidos à injeção de látex com pigmento corado e sulfato de bário. Após a perfusão, foram feitas radiografias contrastadas e imagens de tomografia computadorizada para relacionar o seio venoso com a estrutura óssea e dimensões relativas da calota craniana. Os crânios apresentaram índice cefálico (IC) médio de 91,24±8,34mm e índice crânio-facial (ICF) médio de 2,89±0,23mm. As mensurações do seio venoso sagital dorsal, relativas à calota craniana, apresentaram os seguintes valores médios: Área = 10,18±4,69mm²; D1 = 11,84±2,35mm; D2 = 19,57±2,61mm; D3 = 17,88±2,31mm; D4 = 25,32±5,68mm; e D5= 24,84±4,40mm.
Resumo:
Realizou-se a pesquisa com o intuito de avaliar os resultados clínicos da denervação acetabular cranial e dorsal por curetagem em cães com displasia coxofemoral. Foram estudados, para tanto, 97 cães, sem predileção racial ou sexual, de 1-7 anos de idade, com diagnóstico clínico e radiográfico de displasia coxofemoral. Para avaliação dos resultados da técnica cirúrgica, de curetagem das fibras nervosas do periósteo acetabular cranial e dorsal, exames clínicos foram realizados no momento pré-operatório (exame inicial), e pós-operatório, nos dias dois, sete, 14, 21, 30, 60, 180 e 360. Todos os animais foram avaliados quanto à claudicação, dor à movimentação e toque, grau de atrofia muscular, sensibilidade dolorosa ao teste de Ortolani, e qualidade de vida. A denervação reduziu a claudicação, e dor à movimentação e toque à partir de dois dias de pós-operatório, reduziu atrofia muscular aos 60 dias pós-operatórios, e melhorou a qualidade de vida dos pacientes tratados, sob a ótica dos proprietários e veterinários aos 360 dias de pós-operatório. A dener-vação acetabular dorsal é técnica factível no tratamento da dor conseqüente à displasia coxofemoral em cães, com decréscimo significativo desta após dois dias da intervenção cirúrgica, aumenta qualidade de vida e proporciona maior atividade aos pacientes com proprietários satisfeitos quanto aos resultados do procedimento. A técnica cirúrgica deve incluir a curetagem das fibras nervosas do periósteo acetabular tanto da região cranial quanto dorsal.
Resumo:
The neurohistologic observations were performed using the specimens prepared by Winkelmann and Schmitt silver impregnation method. The tissues were fixed in 10% formalin solution and sections of 40µm thickness were obtained by Leica Cryostat at -30ºC. The sections of dorsal mucosa of White-lipped peccary tongue showed numerous filliform and fungiform papillae, and two vallate papillae on the caudal part. The epithelial layer revealed queratinized epithelial cells and the connective tissue papillae of different sizes and shapes. Thick nerve fiber bundles are noted into the subepithelial connective tissue of the papillae. The connective tissue of fungiform and vallate papillae contained numerous sensitive nerves fibers bundles forming a complex nerve plexus.
Resumo:
O objetivo deste experimento foi isolar a musculatura epaxial da medula espinhal de cães submetidos à laminectomia dorsal modificada (LDM) e averiguar se os músculos influenciaram na formação da fibrose epidural, na compressão medular e no aparecimento dos sinais neurológicos. Para isso, dez cães hígidos foram submetidos à LDM entre as vértebras T13 e L1 e distribuídos aleatoriamente em dois grupos denominados controle (I) onde a medula espinhal permaneceu exposta sem a presença de implante, e tratado (II)onde foi colocado um im-plante a base de alumínio entre a musculatura epaxial adjacente e a medula espinhal exposta pela LDM. As avaliações constaram de exames neurológicos diários até 180 dias de pós-operatório (PO); mielografia, decorridos 15, 30 e 60 dias de PO; e avaliação macroscópica mediante a reintervenção cirúrgica. Não houve diferença durante as avaliações neurológicas. Aos 15 dias de PO, foi verificado na mielografia, que o grau de compressão da linha de contraste foi maior no grupo tratado (P<0,05) quando comparado ao grupo controle, não havendo diferença dos demais tempos estudados. Na avaliação macroscópica, pode-se observar que no Grupo II, a musculatura epaxial adjacente à medula espinhal não estava em contato com a fibrose epidural, diferentemente do grupo controle. O implante pôde ser removido facilmente e apresentava discreto grau de deformidade crânio-dorsal. Pode-se concluir que a musculatura epaxial adjacente é isolada da medula espinhal pelo implante à base de alumínio em cães submetidos à LDM, e esta não influencia na formação da fibrose epidural, compressão medular e no aparecimento dos sinais neurológicos.
Resumo:
The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu) concentration in clinical cases of acute copper poisoning (ACP). A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million) was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.
Resumo:
To investigate the behavioral effects of different vehicles microinjected into the dorsal periaqueductal grey (DPAG) of male Wistar rats, weighing 200-250 g, tested in the elevated plus maze, animals were implanted with cannulas aimed at this structure. One week after surgery the animals received microinjections into the DPAG of 0.9% (w/v) saline, 10% (v/v) dimethyl sulfoxide (DMSO), 2% (v/v) Tween-80, 10% (v/v) propylene glycol, or synthetic cerebrospinal fluid (CSF). Ten min after the injection (0.5 µl) the animals (N = 8-13/group) were submitted to the elevated plus maze test. DMSO significantly increased the number of entries into both the open and enclosed arms when compared to 0.9% saline (2.7 ± 0.8 and 8.7 ± 1.3 vs 0.8 ± 0.3 and 5.1 ± 0.9, respectively, Duncan test, P<0.05), and tended to increase enclosed arm entries as compared to 2% Tween-80 (8.7 ± 1.3 vs 5.7 ± 0.9, Duncan test, P<0.10). In a second experiment no difference in plus maze exploration was found between 0.9% saline- or sham-injected animals (N = 11-13/group). These results indicate that intra-DPAG injection of some commonly used vehicles such as DMSO, saline or Tween-80 affects the exploratory activity of rats exposed to the elevated plus maze in statistically different manners
Resumo:
The fundamental role of N-methyl-D-aspartate (NMDA) receptors in many cortical functions has been firmly defined, as has its involvement in a number of neurological and psychiatric diseases. However, until recently very little was known about the anatomical localization of NMDA receptors in the cerebral cortex of mammals. The recent application of molecular biological techniques to the study of NMDA receptors has provided specific tools which have greatly expanded our understanding of the localization of NMDA receptors in the cerebral cortex. In particular, immunocytochemical studies on the distribution of cortical NMDA receptors have shown that NMDA receptors are preferentially localized on dendritic spines, have disclosed an unknown fraction of presynaptic NMDA receptors on both excitatory and inhibitory axon terminals, and demonstrated that cortical astrocytes do express NMDA receptors. These studies suggest that the effects induced by the activation of NMDA receptors are not due solely to the opening of NMDA channels on neuronal postsynaptic membranes, as previously assumed, but that the activation of presynaptic and glial NMDA receptors may mediate part of these effects
Resumo:
Rapid eye movement (REM) sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase) controls acetylcholine (Ach) availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12). Two additional groups, a home-cage control (N = 6) and a large platform control (N = 6), were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant), membrane-bound (100,000 g pellet) and soluble (100,000 g supernatant) Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet) enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8). There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2). Our results suggest that REM sleep deprivation changes Ach availability at the level of its receptors through a decrease in Achase activity
Resumo:
Lesions of the entorhinal cortex produce retrograde memory impairment in both animals and humans. Here we report the effects of bilateral entorhinal cortex lesions caused by the stereotaxic infusion of N-methyl-D-aspartate (NMDA) in rats at two different moments, before or after the training session, on memory of different tasks: two-way shuttle avoidance, inhibitory avoidance and habituation to an open field. Pre- or post-training entorhinal cortex lesions caused an impairment of performance in the shuttle avoidance task, which agrees with the previously described role of this area in the processing of memories acquired in successive sessions. In the inhibitory avoidance task, only the post-training lesions had an effect (amnesia). No effect was observed on the open field task. The findings suggest that the role of the entorhinal cortex in memory processing is task-dependent, perhaps related to the complexity of each task
Resumo:
We studied the distribution of NADPH-diaphorase activity in the visual cortex of normal adult New World monkeys (Saimiri sciureus) using the malic enzyme "indirect" method. NADPH-diaphorase neuropil activity had a heterogeneous distribution. In coronal sections, it had a clear laminar pattern that was coincident with Nissl-stained layers. In tangential sections, we observed blobs in supragranular layers of V1 and stripes throughout the entire V2. We quantified and compared the tangential distribution of NADPH-diaphorase and cytochrome oxidase blobs in adjacent sections of the supragranular layers of V1. Although their spatial distributions were rather similar, the two enzymes did not always overlap. The histochemical reaction also revealed two different types of stained cells: a slightly stained subpopulation and a subgroup of deeply stained neurons resembling a Golgi impregnation. These neurons were sparsely spined non-pyramidal cells. Their dendritic arbors were very well stained but their axons were not always evident. In the gray matter, heavily stained neurons showed different dendritic arbor morphologies. However, most of the strongly reactive cells lay in the subjacent white matter, where they presented a more homogenous morphology. Our results demonstrate that the pattern of NADPH-diaphorase activity is similar to that previously described in Old World monkeys
Resumo:
The effects of methylmercury (MeHg) on histochemical demonstration of the NADPH-diaphorase (NADPH-d) activity in the striate cortex were studied in 4 adult cats. Two animals were used as control. The contaminated animals received 50 ml milk containing 0.42 µg MeHg and 100 g fish containing 0.03 µg MeHg daily for 2 months. The level of MeHg in area 17 of intoxicated animals was 3.2 µg/g wet weight brain tissue. Two cats were perfused 24 h after the last dose (group 1) and the other animals were perfused 6 months later (group 2). After microtomy, sections were processed for NADPHd histochemistry procedures using the malic enzyme method. Dendritic branch counts were performed from camera lucida drawings for control and intoxicated animals (N = 80). Average, standard deviation and Student t-test were calculated for each data group. The concentrations of mercury (Hg) in milk, fish and brain tissue were measured by acid digestion of samples, followed by reduction of total Hg in the digested sample to metallic Hg using stannous chloride followed by atomic fluorescence analysis. Only group 2 revealed a reduction of the neuropil enzyme activity and morphometric analysis showed a reduction in dendritic field area and in the number of distal dendrite branches of the NADPHd neurons in the white matter (P<0.05). These results suggest that NADPHd neurons in the white matter are more vulnerable to the long-term effects of MeHg than NADPHd neurons in the gray matter.
Resumo:
Theta rhythm in many brain structures characterizes wakefulness and desynchronized sleep in most subprimate mammalian brains. In close relation to behaviors, theta frequency and voltage undergo a fine modulation which may involve mobilization of dorsal raphe nucleus efferent pathways. In the present study we analyzed frequency modulation (through instantaneous frequency variation) of theta waves occurring in three cortical areas, in hippocampal CA1 and in the dorsal raphe nucleus of Wistar rats during normal wakefulness and after injection of the 5-HT1a receptor agonist 8-OH-DPAT into the dorsal raphe. We demonstrated that in attentive states the variation of theta frequency among the above structures is highly congruent, whereas after 8-OH-DPAT injection, although regular signals are present, the variation is much more complex and shows no relation to behaviors. Such functional uncoupling after blockade demonstrates the influence of dorsal raphe nucleus efferent serotoninergic fibers on the organization of alertness, as evaluated by electro-oscillographic analysis.
Resumo:
Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.
Resumo:
The neuroendocrine system regulates several organic functions such as reproduction, metabolism and adaptation to the environment. This system shows seasonal changes linked to the environment. The experimental model used in the present study was Lagostomus maximus maximus (viscacha). The reproduction of males of this species is photoperiod dependent. Twenty-four adult male viscachas were captured in their habitat at different times during one year. The adrenal glands were processed for light microscopy. Serial cuts were stained with hematoxylin-eosin for the morphometric study, and 100 nuclei of each zone of the adrenal cortex were counted per animal. Data were analyzed statistically by ANOVA and the Tukey test. The cells of the glomerulosa zone are arranged in a tube-shaped structure. The fasciculata zone has large cells with central nuclei and clearly visible nucleoli and with a vacuolar cytoplasm. In the reticularis zone there are two of types of cells, one with a nucleus of fine chromatin and a clearly visible nucleolus and the other with nuclear pycnosis. Morphometric analysis showed maximum nuclear volumes during the February-March period with values of 133 ± 7.3 µm3 for the glomerulosa, 286.4 ± 14.72 µm3 for the fasciculata, and 126.3 ± 9.49 µm3 for the reticularis. Minimum nuclear volumes were observed in August with values of 88.24 ± 9.9 µm3 for the glomerulosa, 163.7 ± 7.78 µm3 for the fasciculata and 64.58 ± 4.53 µm3 for the reticularis. The short winter photoperiod to which viscacha is subjected could inhibit the adrenal cortex through a melatonin increase which reduces the nuclear volume as well as the cellular activity.