25 resultados para Doped-Cerium Oxides
Resumo:
Silver containing heavy metal oxide glasses and glass ceramics of the system WO3-SbPO4-PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment.
Resumo:
The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.
Resumo:
A simple procedure is described for the determination of scopolamine by square-wave voltammetry using a cathodically pretreated boron-doped diamond electrode. Cyclic voltammetry studies indicate that the oxidation of scopolamine is irreversible at a peak potential of 1.59 V (vs. Ag/AgCl (3.0 mol L-1 KCl)) in a 0.50 mol L-1 sulfuric acid solution. Under optimized conditions, the analytical curve obtained was linear (r = 0.9996) for the scopolamine concentration range of 1.0 to 110 µmol L-1, with a detection limit of 0.84 µmol L-1. The method was successfully applied to the determination of scopolamine in pharmaceutical formulations with minimum sample preparation.
Resumo:
Chemically modified electrodes have been studied to obtain new and better electrochemical sensors. Transparent conductive oxides, such as fluorine-doped tin-oxide (FTO), shows electrical conductivity comparable to metals and are potential candidates for new sensors. In this work, FTO was modified by gold electrodeposition from chlorine-auric acid solution using cyclic voltammetry (CV) technique. A set of different materials were produced, varying the scan number. Scanning electron microscopy and electrochemical impedance spectroscopy were performed for the characterization of electrodes surfaces. From this analysis was possible to observe the resistive, capacitive and difusional aspects from all kind of modified electrodes produced, establishing a relationship between this parameters and the scan number. The electrode with 100 scans of CV presented better characteristics for an electrochemical sensor; it has the lowest global impedance and rising of capacitive behavior (related to electrical double layer formation) at lower frequencies. This electrode was tested for paracetamol and caffeine detection. The results showed a high specificity, decreased oxidation potential (0.58 V and 0.97 Vvs. SCE, for paracetamol and caffeine, respectively) and low detection limits (0.82 and 0.052 µmol L-1).
Resumo:
ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Resumo:
The course of reaction between cerium(III) nitrate and different sodium tungstates (Na2WO4, Na10W12O41 and Na6W12O39) has been followed by means of pH and conductometric titrations between the reactants at different pH levels, in aqueous and alcoholic media, with each of the reagents alternatively used as titrant. The electrometric experiments provide definite evidence of the formation of normal-Ce2O3.3WO3 and para- 5Ce2O3.36WO3 tungstates of cerium in the vicinity of pH 6.2 and 5.3. The formation of normal tungstate is almost quantitative and the pH titrations offer a simple means for determination of cerium(III) or tungstate solutions at suitable concentrations and pH range.
Resumo:
This work reports on the investigation of nanosized CeO2-ZnO systems prepared by Pechini's method. The structural and morphological characterization of CeO2-ZnO systems as well as the characterization of CeO2 and ZnO separately, showed that the employed method result in powders with spheroidal particles whose size are in the range 30 - 200 nm, which is appropriate to provide homogeneous suspensions. The ZnO present in the prepared mixed oxides seems to increase particle size distribution and to influence the arrangement of the particles after powder dispersion.
Resumo:
The precise nature of the reaction between nitric acid and sodium ortho-vanadate solutions has been studied by means of electrometric techniques involving potentiometric and conductometric titrations. The well defined inflections and breaks in the titration curves confirm the existence of the anions, pyro-V2O7(4-), meta-VO3- and poly-H2V10O28(4-) corresponding to the ratios of VO4(3-):H+ as 1:1, 1:2 and 1:2.6 in the neighborhood of pH 10.5, 7.4 and 3.6, respectively. The interaction of cerium(III) nitrate with sodium vanadate solutions, at specific pH levels 12.4, 10.5, 7.4 and 3.6 was also studied by potentiometric and conductometric titrations between the reactants. The end-points obtained from the sharp inflections in the titration curves provide definite evidence for the formation and precipitation of cerium ortho-Ce2O3.V2O5, pyro-2Ce2O3.3V2O5 and meta-Ce2O3.3V2O5 vanadates in the neighborhood of pH 7.4, 6.2 and 4.8, respectively. Analytical investigations on the precipitates formed confirm the results of the electrometric study.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
The objective of the present study was to identify disturbances of nitric oxide radical (·NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg) and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg).Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM), urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM), ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.