53 resultados para Distinguishing guise
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
Aedes (Ochlerotatu) rhyacophilus Costa Lima i resurrected from the synonymy with Aedes (Ochlerotatus) scapularis (Rondani). Lectotype and paralectotypes are designated Larval, pupal and both sexes of adult stages are redescribed and illustrated. Bionomics include a picture of a brreding place. Diagnostic characters for distinguishing rhyacophilus from other species of the Scapularis Group are provided. Some data about known distribution are presented.
Resumo:
A key is given for the identification of females of all Holarctic species included into this genus, and keys are provided for distinguishing third instar larvae and puparia of two Palaeartic species. In addition to these, the description of the A. monachae (Kr.) female has been expanded.
Resumo:
A hundred-sixty paraffin-embedded specimens from female cervical lesions were examined for human papillomavirus (HPV) types 6, 11, 16 and 18 infections by non-isotopic in situ hybridization. The data were compared with histologic diagnosis. Eighty-eight (55) biopsies contained HPV DNA sequences. In low grade cervical intraepithelial neoplasias (CIN I), HPV infection was detected in 78.7 of the cases, the benign HPV 6 was the most prevalent type. HPV DNA was detected in 58 of CIN II and CIN III cases and in 41.8 of squamous cell carcinomas (SCC). Histologically normal women presented 20 of HPV infection. Oncogenic HPV was found in 10 of these cases, what may indicate a higher risk of developing CINs and cancer. Twenty-five percent of the infected tissues contained mixed infections. HPV 16 was the most common type infecting the cervix and its prevalence raised significantly with the severity of the lesions, pointing its role in cancer pathogenesis. White women presented twice the cervical lesions of mulatto and African origin women, although HPV infection rates were nearly the same for the three groups (approximately 50). Our results showed that HPV typing by in situ hybridization is a useful tool for distinguishing between low and high risk cervical lesions. Further studies are required to elucidate risk factors associated with HPV infection and progression to malignancy in Brazilian population.
Resumo:
Sequence analysis of Leishmania (Viannia) kDNA minicircles and analysis of multiple sequence alignments of the conserved region (minirepeats) of five distinct minicircles from L. (V.) braziliensis species with corresponding sequences derived from other dermotropic leishmanias indicated the presence of a sub-genus specific sequence. An oligonucleotide bearing this sequence was designed and used as a molecular probe, being able to recognize solely the sub-genus Viannia species in hybridization experiments. A dendrogram reflecting the homologies among the minirepeat sequences was constructed. Sequence clustering was obtained corresponding to the traditional classification based on similarity of biochemical, biological and parasitological characteristics of these Leishmania species, distinguishing the Old World dermotropic leishmanias, the New World dermotropic leishmanias of the sub-genus Leishmania and of the sub-genus Viannia.
Resumo:
Nomimoscolex guillermoi n. sp. and N. dechambrieri n. sp. are described from the gymnotiform fish Gymnotus carapo from Argentina. The new species are placed into Nomimoscolex based on the cortical position of the vitelline follicles, and medullary position of the testes, ovary, and uterus. Both species were compared to the 13 species considered valid in the genus. The combination of features distinguishing N. guillermoi from N. dechambrieri is (1) the position of the vagina to cirrus pouch (anterior or posterior vs always anterior respectively), (2) the total number of testes (41-85 vs 108-130 respectively), (3) the distribution of the vitelline follicles (arranged in dorso-lateral and ventro-lateral bands vs lateral bands respectively), (4) the length of the uteroduct (ending 58% vs 35% from posterior margin of mature proglottis respectively), and (5) the presence of gland cells in the scolex (unicellular glands in the apical region and the external margin of suckers vs the presence of unicellular glands in the apex and other grouped in a cluster medially to the suckers respectively).
Resumo:
Among the molecular markers commonly used for mosquito taxonomy, the internal transcribed spacer 2 (ITS2) of the ribosomal DNA is useful for distinguishing among closely-related species. Here we review 178 GenBank accession numbers matching ITS2 sequences of Latin American anophelines. Among those, we found 105 unique sequences corresponding to 35 species. Overall the ITS2 sequences distinguish anopheline species, however, information on intraspecific and geographic variations is scarce. Intraspecific variations ranged from 0.2% to 19% and our analysis indicates that misidentification and/or sequencing errors could be responsible for some of the high values of divergence. Research in Latin American malaria vector taxonomy profited from molecular data provided by single or few field capture mosquitoes. However we propose that caution should be taken and minimum requirements considered in the design of additional studies. Future studies in this field should consider that: (1) voucher specimens, assigned to the DNA sequences, need to be deposited in collections, (2) intraspecific variations should be thoroughly evaluated, (3) ITS2 and other molecular markers, considered as a group, will provide more reliable information, (4) biological data about vector populations are missing and should be prioritized, (5) the molecular markers are most powerful when coupled with traditional taxonomic tools.
Comparative descriptions of eggs from three species of Rhodnius (Hemiptera: Reduviidae: Triatominae)
Resumo:
The authors describe and compare the morphological and ultrastructural characteristics of eggs from the three most recent described species of the genus Rhodnius Stål, 1859, which have not previously been studied. These species are Rhodnius colombiensis (Mejia, Galvão & Jurberg 1999), Rhodnius milesi (Carcavallo, Rocha, Galvão & Jurberg 2001) and Rhodnius stali (Lent, Jurberg & Galvão 1993). The results revealed that there are similarities in the exochorial architecture of optical microscopy and scanning electron microscopy; these include the predominance of hexagonal cells that are common to all Rhodnius species and variable degrees of lateral flattening, which is common not only to species of this genus, but also to the Rhodniini tribe. Differences in overall colour, the presence of a collar in R. milesi, a longitudinal bevel in R. stali and the precise length of R. colombiensis can be useful distinguishing features. As a result of this study, the key for egg identification proposed by Barata in 1981 can be updated.
Resumo:
Eggs and nymphs of Triatoma dimidiata were described using both light and scanning electron microscopy. The egg body and operculum have an exochorion formed by irregular juxtaposed polygonal cells; these cells are without sculpture and the majority of them are hexagonal in shape. The five instars of T. dimidiatacan be distinguished from each other by characteristics of the pre, meso and metanotum. The number of setiferous tubercles increases progressively among instars. The sulcus stridulatorium of 1st instar nymphs is amorphous, showing median parallel grooves; from the 2nd instar on the sulcus is, progressively, elongate, deep and posteriorly pointed with stretched parallel grooves. All instars have a trichobothrium on the apical 1/3 of segment II of the antenna. The opening of the Brindley's gland is on the mesopleura. Fifth instar nymphs have an apical ctenidium on the ventral surface of the fore tibia. Dorsal glabrous patches are found on the lateral 1/3 of abdomen. Bright oval patches are found on the ventral median line of the abdomen, from segment IV-VI; 1st instar nymphs lack these patches. Abdominal dorsal plates are present from the 1st-5th instars; the 1st instar also contains a rectangular plate in segment IX. From the 2nd instar on, variably-shaped plates are present on segments VII to IX. Morphometric data were also obtained and proved to be useful for distinguishing T. dimidiata instars.
Resumo:
This study is the first report on genetic differences between isolates of Paracoccidioides brasiliensis from a single patient. We describe a simultaneous infection with genetically distinct isolates of P. brasiliensis in a patient with chronic paracoccidioidomycosis. The clinical isolates were obtained from lesions in different anatomical sites and were characterised by random amplified polymorphic DNA (RAPD) analysis. The RAPD technique can be helpful for distinguishing between clinical isolates. Different random primers were used to characterise these clinical isolates. The RAPD patterns allowed for differentiation between isolates and the construction of a phenetic tree, which showed more than 28% genetic variability in this fungal species, opening new possibilities for clinical studies of P. brasiliensis. Based on these results and preliminary clinical findings, we suggest that different genotypes of P. brasiliensis might infect the same patient, inducing the active form of the disease.
Resumo:
The levels of total of IgG, IgG1, IgG2, IgG3 and IgG4 were evaluated in 54 patients with chronic paracoccidioidomycosis (PCM) before, during and after treatment using an enzyme-linked immunosorbent assay with Mexo and recombinant Pb27 (rPb27) as the antigens. Mexo was effective in distinguishing PCM patients from individuals in the negative control group (NC) based on total IgG and rPb27 performed worse than Mexo when these two groups were compared. IgG1, IgG2, IgG3 and IgG4 could not be used to clearly distinguish PCM patients from those in the NC group using either antigen. There was no clear relationship between antibody levels and the period of treatment. The majority of patients presented with decreased antibody levels during treatment, with no statistically significant differences among the different periods of treatment. Only IgG4 presented a negative correlation between its levels and clinical improvement during treatment. In total, 65% of untreated PCM patients showed reactivity against IgG4 when the Mexo antigen was used and this reactivity decreased over the course of treatment. There was a tendency towards decreasing antibody levels during treatment, but these antibody levels did not necessarily clear after the treatment was stopped. Mexo was useful for PCM diagnosis using total IgG; however, more studies are necessary before this antigen can be used in measuring the levels of total IgG and its subclasses for monitoring patients during treatment.
Resumo:
In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70) regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL). A total of 70 Leishmania strains were analysed, including seven reference strains (RS) and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorfism (PCR-RFLP). This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region), internal transcribed spacer (ITS)1 and glucose-6-phosphate dehydrogenase (G6pd). A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.
Resumo:
According to the WHO (World Health Organization) and the European Union, suicide is considered to be a health problem of prime importance and to be one of the principal causes of unnatural death. In Spain, the number of suicides has increased 12% since 2005 . The Research Project “European Regions Enforcing Actions against Suicide (EUREGENAS), funded by the Health Program 2008-2013, has as main objective the description of an integrated model of Mental Health orientated to the prevention of suicide. The differences that allow distinguishing the meaning of prevention in suicide behavior are described and explained through a qualitative methodological strategy and through the creation of discussion groups formed by different groups of health professionals. The results highlight the existing differences between the diverse health professionals who come more in contact with this problem and it shows as well the coincidence of meaning that suicide has to be considered as a priority in the field of health.
Resumo:
OBJECTIVE To verify if the type of donor is a risk factor for infection in kidney transplant recipients. METHODS Systematic Review of Literature with Meta-analysis with searches conducted in the databases MEDLINE, LILACS, Embase, Cochrane, Web of Science, SciELO and CINAHL. RESULTS We selected 198 studies and included four observational studies describing infections among patients distinguishing the type of donor. Through meta-analysis, it was shown that in patients undergoing deceased donor transplant, the outcome infection was 2.65 higher, than those who received an organ from a living donor. CONCLUSION The study showed that deceased kidney donor recipients are at an increased risk for developing infections and so the need for establishing and enforcing protocols from proper management of ischemic time to the prevention and control of infection in this population emerges.
Resumo:
Twenty-nine isolates of the ectomycorrhiza fungus Pisolithus sp. from different geographical and host origins were tested for their ability to form ectomycorrhizae on Eucalyptus grandis and E. urophylla seedlings under greenhouse conditions. The ectomycorrhiza-forming capacity of isolates varied greatly from one eucalypt species to the other. All isolates from Eucalyptus, nine from Pinus spp. and two isolates from unknown hosts formed mycorrhizae with E. grandis and E. urophylla. Root colonization rates varied from 0 to 5.2 % for all Pinus isolates and those from unknown hosts. Colonization rates for these isolates were lower than those observed for Eucalyptus isolates (0.8 to 89.4 %). Three isolates from unknown hosts formed mycorrhizae with neither Eucalyptus species. The main characteristic for distinguishing Pinus from Eucalyptus isolates was mantle color. These data corroborate previous results obtained in our laboratory indicating that the isolates tested represent at least two distinct different species within the genus Pisolithus.