26 resultados para Disposal of solid waste
Resumo:
Solid-state M-2-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 2-MeO-Bz is 2-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), thermogravimetry, derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to have information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
Solid-state M-4-MeO-Bz compounds, where M stands for trivalent La, Ce, Pr, Nd and Sm and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, polymorphic transformation, ligand's denticity, thermal behaviour and thermal decomposition of the isolated compounds.
Thermal decomposition of solid state compounds of lanthanide and yttrium benzoates in CO2 atmosphere
Resumo:
Solid-state Ln-Bz compounds, where Ln stands for trivalent lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetric and differential thermal analysis in a CO2 atmosphere were used to study the thermal decomposition of these compounds.
Resumo:
The 2-methoxycinnamylidenepyruvic acid (2-MeO-HCP) was synthesized and characterized for nuclear magnetic resonance (¹H and 13C NMR), mass spectrometry (MS), Infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The application of DSC for purity determination is well documented in literature and is used in the analysis of pure organic compounds. The molecular geometry and vibrational frequencies of 2-MeO-HCP have been calculated.
Resumo:
Divalent metal complexes of ligand 2-methoxybenzylidenepyruvate with Fe, Co, Ni, Cu and Zn as well as sodium salt were synthesized and investigated in the solid state. TG curves of these compounds were obtained with masses sample of 1 and 5mg under nitrogen atmosphere. Different heating rates were used to characterize and study these compounds from the kinetic point of view. The activation energy and pre-exponential factor were obtained applying the Wall-Flynn-Ozawa method to the TG curves. The obtained data were evaluated and the values of activation energy (Ea / kJ mol-1) was plotted in function of the conversion degree (α). The results show that due to mass sample, different activation energies were obtained. The results are discussed mainly taking into account the linear dependence between the activation energy and the pre exponential factor, where was verified the effect of kinetic compensation (KCE) and possible linear relations between the dehydrations steps of these compounds.
Resumo:
Solid State M-2-MeO-CP compounds, where M stands for bivalent metals (Mn, Fe, Co, Ni, Cu and Zn) and 2-MeO-CP is 2-methoxycinnamylidenepyruvate, were synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), elemental analysis and complexometry were used to establish the stoichiometry and to study the thermal behaviour of these compounds in CO2 and N2 atmospheres. The results were consistent with the general formula: M(L)2∙H2O. In both atmospheres (CO2, N2) the thermal decomposition occurs in consecutive steps which are characteristic of each compound. For CO2 atmosphere the final residues were: Mn3O4, Fe3O4, Co3O4, NiO, Cu2O and ZnO, while under N2 atmosphere the thermal decomposition is still observed at 1000 º C.
Resumo:
The utilization of organic wastes represents an alternative to recover degraded pasture. The experiment aimed to assess the changes caused by the provision of different organic waste (poultry litter, turkey litter and pig manure) in a medium-textured Oxisol in Brazilian Savanna under degraded pasture. It was applied different doses of waste compared to the use of mineral fertilizers and organic mineral and evaluated the effect on soil parameters (pH, organic matter, phosphorus and potassium) and leaf of Brachiariadecumbens (crude protein, phosphorus and dry mass production). It was observed that application of organic waste did not increase the level of soil organic matter and pH in the surface layer, and the application of turkey litter caused acidification at depths of 0.20-0.40 m and 0.40-0.60 m. There was an increase in P and K in the soil with the application of poultry litter and swine manure. All organic wastes increased the productivity of dry matter and crude protein and phosphorus. The recycling of nutrients via the application of organic waste allows efficiency of most parameters similar to those observed with the use of mineral sources, contributing to improving the nutritional status of soil-plantsystem.
Resumo:
ABSTRACT This paper aimed at investigating the knowledge level of people working on pesticide spraying activities concerning spray adjuvant properties, as well as collecting information on disposal locations for residues from internal spray tank cleaning, and finally the understanding of pesticide spray drift occurrence in the state of Mato Grosso, Brazil. The information was gathered through a questionnaire answered by participants of a rural extension program in application technology located in nineteen grain and fiber producing regions of Mato Grosso state. Among the mentioned adjuvants, 49.0% belonged to the mineral oil class and 17.9% of participants did not know the functions performed by such products. In addition, 58.5% of the participants discarded residues into the field. Among the participants who answered the question about spray drift occurrence causes, 54.1% indicated problems relating to inadequate weather conditions. In conclusion, there is a lack of knowledge on adjuvant functions, besides of inappropriate residue disposal in the state of Mato Grosso. Spray drift was referred as a problem; however, most of participants were not able to discuss the causes of these losses.
Resumo:
A three dimensional nonlinear viscoelastic constitutive model for the solid propellant is developed. In their earlier work, the authors have developed an isotropic constitutive model and verified it for one dimensional case. In the present work, the validity of the model is extended to three-dimensional cases. Large deformation, dewetting and cyclic loading effects are treated as the main sources of nonlinear behavior of the solid propellant. Viscoelastic dewetting criteria is used and the softening of the solid propellant due to dewetting is treated by the modulus decrease. The nonlinearities during cyclic loading are accounted for by the functions of the octahedral shear strain measure. The constitutive equation is implemented into a finite element code for the analysis of propellant grains. A commercial finite element package ABAQUS is used for the analysis and the model is introduced into the code through a user subroutine. The model is evaluated with different loading conditions and the predicted values are in good agreement with the measured ones. The resulting model applied to analyze a solid propellant grain for the thermal cycling load.
Resumo:
Solid lipid particles have been investigated by food researchers due to their ability to enhance the incorporation and bioavailability of lipophilic bioactives in aqueous formulations. The objectives of this study were to evaluate the physicochemical stability and digestibility of lipid microparticles produced with tristearin and palm kernel oil. The motivation for conducting this study was the fact that mixing lipids can prevent the expulsion of the bioactive from the lipid core and enhance the digestibility of lipid structures. The lipid microparticles containing different palm kernel oil contents were stable after 60 days of storage according to the particle size and zeta potential data. Their calorimetric behavior indicated that they were composed of a very heterogeneous lipid matrix. Lipid microparticles were stable under various conditions of ionic strength, sugar concentration, temperature, and pH. Digestibility assays indicated no differences in the release of free fatty acids, which was approximately 30% in all analises. The in vitro digestibility tests showed that the amount of palm kernel in the particles did not affect the percentage of lipolysis, probably due to the high amount of surfactants used and/or the solid state of the microparticles.
Resumo:
A new approach for teaching in basic experimental organic chemistry is presented. Experimental work goes on parallel to theoretical lectures leading to an immediate application of theoretical concepts transmitted therein. One day/week is dedicated exclusively to the organic laboratory. Reactions are proposed as problems to be solved; the student has to deduce the structure of the product on the basis of his observations, the analytical data and his mechanistical knowledge. 70 different experiments, divided in 7 thematical chapters, are presented. All experiments require the analysis and discussion of 1H and 13C NMR, IR and UV spectra. Additional questions about each reaction have to be answered by the student in his written report. Laboratory safety is garanteed by the exclusion or substitution of hazardous and toxic reagents. Microscale preparations are adopted in most cases to lower the cost of materials and the amount of waste. Recycling of many reaction products as starting materials in other experiments reduces the need for commercial reagents and allows the execution of longer reaction sequences. Only unexpensive standard laboratory equipment and simple glassware are required. All experiments include instructions for the save treatment or disposal of chemical waste.