17 resultados para Discrete Fourier transforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei) are involved in the generation of rapid eye movement (REM) sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase), the enzyme which inactivates acetylcholine (Ach) in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase) are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex) after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1) were assayed photometrically. The results (mean ± SD) obtained showed a statistically significant (Student t-test) increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025) and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05). Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05) and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05) were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity induced by REM sleep deprivation was specific to the pons, a brain region where cholinergic neurons involved in REM generation are located, and also to brain regions which receive cholinergic input from the pons (the thalamus and medulla oblongata). During REM sleep extracellular levels of Ach are higher in the pons, medulla oblongata and thalamus. The increase in Achase activity in these brain areas after REM sleep deprivation suggests a higher rate of Ach turnover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autonomic nervous system plays an important role in physiological and pathological conditions, and has been extensively evaluated by parametric and non-parametric spectral analysis. To compare the results obtained with fast Fourier transform (FFT) and the autoregressive (AR) method, we performed a comprehensive comparative study using data from humans and rats during pharmacological blockade (in rats), a postural test (in humans), and in the hypertensive state (in both humans and rats). Although postural hypotension in humans induced an increase in normalized low-frequency (LFnu) of systolic blood pressure, the increase in the ratio was detected only by AR. In rats, AR and FFT analysis did not agree for LFnu and high frequency (HFnu) under basal conditions and after vagal blockade. The increase in the LF/HF ratio of the pulse interval, induced by methylatropine, was detected only by FFT. In hypertensive patients, changes in LF and HF for systolic blood pressure were observed only by AR; FFT was able to detect the reduction in both blood pressure variance and total power. In hypertensive rats, AR presented different values of variance and total power for systolic blood pressure. Moreover, AR and FFT presented discordant results for LF, LFnu, HF, LF/HF ratio, and total power for pulse interval. We provide evidence for disagreement in 23% of the indices of blood pressure and heart rate variability in humans and 67% discordance in rats when these variables are evaluated by AR and FFT under physiological and pathological conditions. The overall disagreement between AR and FFT in this study was 43%.