26 resultados para Density functional perturbation theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friedelin molecular conformers were obtained by Density Functional Theory (DFT) and by ab initio structure determination from powder X-ray diffraction. Their conformers with the five rings in chair-chair-chair-boat-boat, and with all rings in chair, are energy degenerated in gas-phase according to DFT results. The powder diffraction data reveals that rings A, B and C of friedelin are in chair, and rings D and E in boat-boat, conformation. The high correlation values among powder diffraction data, DFT and reported single-crystal data indicate that the use of conventional X-ray diffractometer can be applied in routine laboratory analysis in the absence of a single-crystal diffractometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory was used to investigate the global and local reactivity of some cis-platinum(II) complexes including anticancer drugs, such as cisplatin and carboplatin. Calculated equilibrium geometries at mPW1PW/LANL2DZ* are in close agreement with their available X-ray data. We develop three new local reactivity descriptors: atomic descriptor of philicity, atomic descriptor group and atomic descriptor of philicity group for determining chemical reactivity and selectivity of the studied complexes. This contribution on chemical reactivity allow us to establish qualitative trends, which enable our descriptors for use in rational platinum based anticancer drug design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations at the B3LYP/6-31G** theoretical level were performed for a series of guanidine-fused bicyclic skeleton derivatives C4N6H8-n(NO2)n (n = 1 - 6). The heats of formation (HOFs) were calculated by isodesmic reactions, and the detonation properties were evaluated using the Kamlet - Jacobs equations. The bond dissociation energies were also analyzed to investigate the thermal stability and sensitivity of the compounds. The results show that all of the derivatives have high positive HOFs, compound G has the highest theoretical density, and compound F1 has the highest detonation velocity and detonation pressure. Considering both the detonation properties and thermal stabilities, compounds D1 and D4 (3 nitro substituents), E1 - E6 (4 nitro substituents), and G (6 nitro substituents) can be regarded as potential candidates for high-energy density materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and electronic properties of titanium dioxide (TiO2) thin films, in anatase phase, were investigated using periodic 2D calculations at density functional theory (DFT) level with B3LYP hybrid functional. The Grimme dispersion correction (DFT/B3LYP-D*) was included to better reproduce structural features. The electronic properties were discussed based on the band gap energy, and proved dependent on surface termination. Surface energies ranged from 0.80 to 2.07 J/m², with the stability orders: (101) > (100) > (112) > (110) ~ (103) > (001) >> (111), and crystal shape by Wulff construction in accordance with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined experimental and Density functional theory (DFT) B3LYP/6-311+G* study on the IR spectra of four stable isomers of 2-N,N-dimethylaminecyclohexyl 1-N',N'-dimethylcarbamate was performed. Our theoretical calculations reveal that two new isomers of this compound exist and may be more stable than the known isomers. In addition the entropy, heat capacity, and the enthalpy content of the stable isomers are computed by fitting the calculated data to a standard Shomate equation and IR spectra for the two new isomers are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular modelling using semiempirical methods AM1, PM3, PM5 and, MINDO as well as the Density Functional Theory method BLYP/DZVP respectively were used to calculate the structure and vibrational spectra of d-glucose and d-fructose in their open chain, alpha-anomer and beta-anomer monohydrate forms. The calculated data show that both molecules are not linear; ground state and the number for the point-group C is equal to 1. Generally, the results indicate that there are similarities in bond lengths and vibrational modes of both molecules. It is concluded that DFT could be used to study both the structural and vibrational spectra of glucose and fructose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and electronic properties of 1-(5-Hydroxymethyl - 4 -[ 5 - (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]-tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present investigation reports on the interaction of the C/O triplet atoms inside of the [60] fullerene (C60) species with small polar molecules (H²O, CH³OH, HF, NH³) using Density Functional Theory (DFT) calculations. The calculations show that in all the computed cases the encapuslated complexes with the molecules are more stable than without internal atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the Weeks-Chandler-Andersen (WCA) perturbation theory coupled with the Enskog’s solution of the Boltzmann equation for dense hard-sphere fluids is employed for estimating diffusion coefficients in compressed pure liquids and fluids and dense fluid mixtures. The effect of density correction on the estimation of diffusivities is analyzed using the Carnahan-Starling pair correlation function and the correlation of Speedy and Harris which have been proposed as models of self-diffusion coefficient of hard-sphere fluids. The approach presented here is based on the smooth hard-sphere theory without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent fluid mixtures. It is shown that the correlated and the predicted diffusivities are in good agreement with the experimental data and much better than estimates of Wilke-Chang equation.