38 resultados para Death cell
Resumo:
Treatment with indinavir has been shown to result in marked decreases in viral load and increases in CD4 cell counts in HIV-infected individuals. A randomized double-blind study to evaluate the efficacy of indinavir alone (800 mg q8h), zidovidine alone (200 mg q8h) or the combination was performed to evaluate progression to AIDS. 996 antiretroviral therapy-naive patients with CD4 cell counts of 50-250/mm3 were allocated to treatment. During the trial the protocol was amended to add lamivudine to the zidovudine-containing arms. The primary endpoint was time to development of an AIDS-defining illness or death. The study was terminated after a protocol-defined interim analysis demonstrated highly significant reductions in progression to a clinical event in the indinavir-containing arms, compared to the zidovudine arm (p<0.0001). Over a median follow-up of 52 weeks (up to 99 weeks), percent reductions in hazards for the indinavir plus zidovudine and indinavir groups compared to the zidovudine group were 70% and 61%, respectively. Significant reductions in HIV RNA and increases in CD4 cell counts were also seen in the indinavir-containing groups compared to the zidovudine group. Improvement in both CD4 cell count and HIV RNA were associated with reduced risk of disease progression. All three regimens were generally well tolerated.
Resumo:
Limited and contradictory information exists regarding the prognosis of HIV/HTLV-I co-infection. Our goal was to estimate the effect of HTLV-I infection on mortality in HIV-infected patients at a HIV reference center in Peru. We studied a retrospective cohort of HIV-infected patients, who were exposed or unexposed to HTLV-I. Exposed patients were Western Blot (WB) positive for both retroviruses. Unexposed patients were WB positive for HIV, and had least one negative EIA for HTLV-I. These were selected among patients who entered our Program immediately before and after each exposed patient, between January 1990 and June 2004. Survival time was considered between the diagnosis of exposure to HTLV-I and death or censoring. Confounding variables were age, gender, baseline HIV clinical stage, baseline CD4+ T cell count, and antiretroviral therapy. We studied 50 exposed, and 100 unexposed patients. Exposed patients had a shorter survival compared to unexposed patients [median survival: 47 months (95% CI: 17-77) vs. 85 months (95% CI: 70-100), unadjusted p = 0.06]. Exposed patients had a higher rate of mortality compared to unexposed patients (HIV/HTLV-I (24/50 [48%]) vs. HIV only (37/100 [37%]), univariable p = 0.2]. HTLV-I exposure was not associated to a higher risk of death in the adjusted analysis: HR: 1.2 (0.4-3.5). AIDS clinical stage and lack of antiretroviral therapy were associated to a higher risk of dying. In conclusions, HTLV-I infection was not associated with a higher risk of death in Peruvian HIV-infected patients. Advanced HIV infection and lack of antiretroviral therapy may explain the excess of mortality in this population.
Resumo:
The first report to our knowledge, of hyperinfection by Strongyloides stercoralis (HS) and hypereosinophilia, associated to immune suppression by Rituximab (the only drug received for the last one year and 10 months), in a patient with mantle-cell lymphoma (MCL), is presented. The patient has a 3-year history of MCL, and developed two accesses of HS during 2008, including meningitis, pneumonia and presence of larvae of S. stercoralis in the lungs. We had a unique chance to look at cytotoxicity of filariform larvae in the expectoration after Ivermectin treatment, showing immobilization and death of larvae, associated with eosinophils attached to the cuticle of the parasite.
Resumo:
Modulation by BCG and/or cyclophosphamide of sensitization of mice with flagellar fraction (a tubulin-enriched fraction) prevented death of mice challenged with T. cruzi CL strain trypomastigotes recovered from Vero cells. A methodology was ceveloped to assay specific antigens and to determine optimal doses for sensitization and elicitation of DTH in mice. CL strain is predominantly myotropic strain which does not produce important parasitism of mononuclear phagocyte cells; these cells appear to control infection when activated in vivo. Maximum protection was seen in this study when BCG and cyclophosphamide were associated, but protection was observed also when cyclophosphamide, that prevents supressor T cells, was applied 2 days before flagellar fraction sensitization in normal mice. These experiments suggested that the macrophage may have an important role in the early phases of infection particularly when nonspecific stimulation is associated with specific sensitization. A correlation betwen delayed hypersensitivity to parasite antigens and protection was observed.
Resumo:
Mycobacteria, specially Mycobacterium tuberculosis are among the micro-organisms that are increasing dramatically the number of infections with death, all over the world. A great number of animal experimental models have been proposed to investigate the mechanisms involved in the host response against these intracellular parasites. Studies of airway infection in guinea-pigs and rabbits, as well as, in mice intravenously infected with BCG have made an important contribution to our understanding of the virulence, pathogenesis and the immunology of mycobacterial infections. Although, there are few models to study the mechanisms of the initial inflammatory process induced by the first contact with the Mycobacteria, and the relevance of the acute generation of inflammatory mediators, cytokines and leukocyte infiltration to the development of the mycobacterial infection. In this work we reviewed our results obtained with a model of M. bovis BCG-induced pleurisy in mice, describing the mechanisms involved in the leukocyte influx induced by BCG at 24 hr. Different mechanisms appear to be related with the influx of neutrophils, eosinophils and mononuclear cells and distinct inflammatory mediators, cytokines and adhesion molecules are involved in the BCG-induced cell accumulation.
Resumo:
Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such infections could cause serious risks to the infected host.
Resumo:
Developing thymocytes interact with thymic epithelial cells (TECs) through cell-cell interactions, TEC-derived secretory moieties and extracellular matrix (ECM)-mediated interactions. These physiological interactions are crucial for normal thymocyte differentiation, but can be disrupted in pathological situations. Indeed, there is severe thymic atrophy in animals acutely infected with Trypanosoma cruzi due to CD4+CD8+ thymocyte depletion secondary to caspase-mediated apoptosis, together with changes in ECM deposition and thymocyte migration. We studied an in vitro model of TEC infection by T. cruzi and found that infected TEC cultures show a reduced number of cells, which was likely associated with decreased proliferative capacity, but not with increased cell death, as demonstrated by bromodeoxyuridine and annexin-V labelling. The infected TEC cultures exhibited increased expression of fibronectin (FN), laminin (LM) and type IV collagen. Importantly, treatment with FN increased the relative number of infected cells, whereas treatment with anti-FN or anti-LM antibodies resulted in lower infection rates. Consistent with these data, we observed increased thymocyte adhesion to infected TEC cultures. Overall, these results suggest that ECM molecules, particularly FN, facilitate infection of the thymic epithelium and that the consequent enhancement of ECM expression might be associated with changes in TEC-thymocyte interactions.
Resumo:
This research aimed to characterize the tolerance to flooding and alterations in pectic and hemicellulose fractions from mesocotyl of maize tolerant to flooding when submitted to hypoxia. In order to characterize tolerance seeds from maize cultivars Saracura BRS-4154 and BR 107 tolerant and sensitive to low oxygen levels, respectively, were set to germinate. Plantlet survival was evaluated during five days after having been submitted to hypoxia. After fractionation with ammonium oxalate 0.5% (w/v) and KOH 2M and 4M, Saracura BRS-4154 cell wall was obtained from mesocotyl segments with different damage intensities caused by oxygen deficiency exposure. The cell wall fractions were analyzed by gel filtration and gas chromatography, and also by Infrared Spectrum with Fourrier Transformation (FTIR). The hypoxia period lasting three days or longer caused cell lysis and in advanced stages plant death. The gelic profile from pectic, hemicellulose 2M and 4M fractions from samples with translucid and constriction zone showed the appearance of low molecular weight compounds, similar to glucose. The main neutral sugars in pectic and hemicellulose fractions were arabinose, xilose and mannose. The FTIR spectrum showed a gradual decrease in pectic substances from mesocotyl with normal to translucid and constriction appearance respectively.
Resumo:
The genetic alterations observed in head and neck cancer are mainly due to oncogene activation (gain of function mutations) and tumor suppressor gene inactivation (loss of function mutations), leading to deregulation of cell proliferation and death. These genetic alterations include gene amplification and overexpression of oncogenes such as myc, erbB-2, EGFR and cyclinD1 and mutations, deletions and hypermethylation leading to p16 and TP53 tumor suppressor gene inactivation. In addition, loss of heterozygosity in several chromosomal regions is frequently observed, suggesting that other tumor suppressor genes not yet identified could be involved in the tumorigenic process of head and neck cancers. The exact temporal sequence of the genetic alterations during head and neck squamous cell carcinoma (HNSCC) development and progression has not yet been defined and their diagnostic or prognostic significance is controversial. Advances in the understanding of the molecular basis of head and neck cancer should help in the identification of new markers that could be used for the diagnosis, prognosis and treatment of the disease.
Resumo:
It is well known that mitochondria are the main site for ATP generation within most tissues. However, mitochondria also participate in a surprising number of alternative activities, including intracellular Ca2+ regulation, thermogenesis and the control of apoptosis. In addition, mitochondria are the main cellular generators of reactive oxygen species, and may trigger necrotic cell death under conditions of oxidative stress. This review concentrates on these alternative mitochondrial functions, and their role in cell physiopathology.
Resumo:
Natural cell death is a well-known degenerative phenomenon occurring during development of the nervous system. The role of trophic molecules produced by target and afferent cells as well as by glial cells has been extensively demonstrated. Literature data demonstrate that cAMP can modulate the survival of neuronal cells. Cultures of mixed retinal cells were treated with forskolin (an activator of the enzyme adenylyl cyclase) for 48 h. The results show that 50 µM forskolin induced a two-fold increase in the survival of retinal ganglion cells (RGCs) in the absence of exogenous trophic factors. This effect was dose dependent and abolished by 1 µM H89 (an inhibitor of protein kinase A), 1.25 µM chelerythrine chloride (an inhibitor of protein kinase C), 50 µM PD 98059 (an inhibitor of MEK), 25 µM Ly 294002 (an inhibitor of phosphatidylinositol-3 kinase), 30 nM brefeldin A (an inhibitor of polypeptide release), and 10 µM genistein or 1 ng/ml herbimycin (inhibitors of tyrosine kinase enzymes). The inhibition of muscarinic receptors by 10 µM atropine or 1 µM telenzepine also blocked the effect of forskolin. When we used 25 µM BAPTA, an intracellular calcium chelator, as well as 20 µM 5-fluoro-2'-deoxyuridine, an inhibitor of cell proliferation, we also abolished the effect. Our results indicate that cAMP plays an important role controlling the survival of RGCs. This effect is directly dependent on M1 receptor activation indicating that cholinergic activity mediates the increase in RGC survival. We propose a model which involves cholinergic amacrine cells and glial cells in the increase of RGC survival elicited by forskolin treatment.
Resumo:
The c-myc protein is known to regulate the cell cycle, and its down-regulation can lead to cell death by apoptosis. The role of c-myc protein as an independent prognostic determinant in cervical cancer is controversial. In the present study, a cohort of 220 Brazilian women (mean age 53.4 years) with FIGO stage I, II and III (21, 28 and 51%, respectively) cervical squamous cell carcinomas was analyzed for c-myc protein expression using immunohistochemistry. The disease-free survival and relapse-rate were analyzed using univariate (Kaplan-Meier) survival analysis for 116 women who completed the standard FIGO treatment and were followed up for 5 years. Positive c-myc staining was detected in 40% of carcinomas, 29% being grade 1, 9% grade 2, and 2% grade 3. The distribution of positive c-myc according to FIGO stage was 19% (17 women) in stage I, 33% (29) in stage II, and 48% (43) in stage III of disease. During the 60-month follow-up, disease-free survival in univariate (Kaplan-Meier) survival analysis (116 women) was lower for women with c-myc-positive tumors, i.e., 60.5, 47.5 and 36.6% at 12, 36, and 60 months, respectively (not significant). The present data suggest that immunohistochemical demonstration of c-myc does not possess any prognostic value independent of FIGO stage, and as such is unlikely to be a useful prognostic marker in cervical squamous cell carcinoma.
Resumo:
Homozygous sickle cell disease (SCD) has a wide spectrum of clinical manifestations. In Brazil, the main cause of death of individuals with SCD is recurrent infection. The CCR5delta32 allele, which confers relative resistance to macrophage-tropic HIV virus infection, probably has reached its frequency and world distribution due to other pathogens that target macrophage in European populations. In the present investigation a relatively higher prevalence (5.1%) of the CCR5delta32 allele was identified, by PCR amplification using specific primers, in 79 SCD patients when compared to healthy controls (1.3%) with the same ethnic background (Afro-Brazilians). Based on a hypothesis that considers SCD as a chronic inflammatory condition, and since the CCR5 chemokine receptor is involved in directing a Th1-type immune response, we suggest that a Th1/Th2 balance can influence the morbidity of SCD. If the presence of the null CCR5delta32 allele results in a reduction of the chronic inflammation state present in SCD patients, this could lead to differential survival of SCD individuals who are carriers of the CCR5delta32 allele. This differential survival could be due to the development of less severe infections and consequently reduced or less severe vaso-occlusive crises.
Resumo:
Two variants (A and B) of the widely employed Walker 256 rat tumor cells are known. When inoculated sc, the A variant produces solid, invasive, highly metastasizing tumors that cause severe systemic effects and death. We have obtained a regressive variant (AR) whose sc growth is slower, resulting in 70-80% regression followed by development of immunity against A and AR variants. Simultaneously with the beginning of tumor regression, a temporary anemia developed (~8 days duration), accompanied by marked splenomegaly (~300%) and changes in red blood cell osmotic fragility, with mean corpuscular fragility increasing from 4.1 to 6.5 g/l NaCl. The possibility was raised that plasma factors associated with the immune response induced these changes. In the present study, we identify and compare the osmotic fragility increasing activity of plasma fractions obtained from A and AR tumor bearers at different stages of tumor development. The results showed that by day 4 compounds precipitating in 60% (NH4)2SO4 and able to increase red blood cell osmotic fragility appeared in the plasma of A and AR tumor bearers. Later, these compounds disappeared from the plasma of A tumor bearers but slightly increased in the plasma of AR tumor bearers. Furthermore, by day 10, compounds precipitating between 60 and 80% (NH4)2SO4 and with similar effects appeared only in plasma of AR tumor bearers. The salt solubility, production kinetics and hemolytic activity of these compounds resemble those of the immunoglobulins. This, together with their preferential increase in rats bearing the AR variant, suggest their association with an immune response against this tumor.
Resumo:
Gastric cancer is the second most frequent type of neoplasia and also the second most important cause of death in the world. Virtually all the established cell lines of gastric neoplasia were developed in Asian countries, and western countries have contributed very little to this area. In the present study we describe the establishment of the cell line ACP01 and characterize it cytogenetically by means of in vitro immortalization. Cells were transformed from an intestinal-type gastric adenocarcinoma (T4N2M0) originating from a 48-year-old male patient. This is the first gastric adenocarcinoma cell line established in Brazil. The most powerful application of the cell line ACP01 is in the assessment of cytotoxicity. Solid tumor cell lines from different origins have been treated with several conventional and investigational anticancer drugs. The ACP01 cell line is triploid, grows as a single, non-organized layer, similar to fibroblasts, with focus formation, heterogeneous division, and a cell cycle of approximately 40 h. Chromosome 8 trisomy, present in 60% of the cells, was the most frequent cytogenetic alteration. These data lead us to propose a multifactorial triggering of gastric cancer which evolves over multiple stages involving progressive genetic changes and clonal expansion.