285 resultados para DRY FOREST
Resumo:
The seeds of 14 species from the caatinga, a dry forest ecosystem of the semiarid region of northeast Brazil, were analysed for total protein and total lipid contents, as well as fatty acid distribution. The seeds of Argemone mexicana L., an introduced and naturalized species in Brazil, commonly found in caatingas and other vegetation, were also analysed. The protein contents ranged from 123 g.kg-1 to 551 g.kg-1, higher contents being found in species of Leguminosae, but also in Jatropha mollissima (Pohl) Baill. (Euphorbiaceae, 409 g.kg-1). Oil contents ranged from 10 g.kg-1 to 400 g.kg-1. The contents of protein and oil were found to be inversely proportional in the seeds of most species, the figures for proteins being generally higher than those of oils. Most species presented either oleic or linoleic as predominant fatty acids. Cardiospermum cf. corindum L. presented eicosenoic acid as the predominant fatty acid.
Resumo:
O estudo foi realizado em dois remanescentes de floresta estacional decidual de 4 e 10 ha, em Piracicaba, São Paulo, Brasil. Esta floresta tem características abióticas próprias, como solo litólico, estresse hídrico no período seco e excesso de água no período úmido, definindo uma flora particular e fisionomia semelhante a de florestas secas. O levantamento florístico foi realizado nos dois remanescentes e o fitossociológico naquele de 10 ha, onde foram amostrados os indivíduos com perímetro à altura do peito (PAP) > ou = 15 cm existentes em 43 parcelas de 10 x 10 m. Foram registradas 110 espécies, 86 gêneros e 42 famílias. Do total de espécies, 20,7% continham espinhos, 31,0% dos 894 indivíduos amostrados apresentaram-se perfilhados e, no estrato dominante, ocorreram espécies com perda de turgescência foliar (24,7% dos indivíduos), decíduas (59,4%), áfilas (13,3%) perenes (1,6%) e semidecíduas (1,0%). As famílias de maior riqueza na fitossociologia foram Leguminosae, Myrtaceae e Rutaceae. As espécies de maior valor de importância foram Cereus hildmanianus, Eugenia florida, Eugenia uniflora, Pseudobombax grandiflorum e Sebastiania serrata. O índice de diversidade de Shannon (H) foi de 3,0 nats/indivíduos e a equabilidade (J) de 0,7 nats/indivíduos.
Resumo:
Highly diverse forms of galling arthropods can be identified in much of southeastern Brazil's vegetation. Three fragments of a Seasonally Dry Tropical Forest (SDTF) located in the southern range of the Espinhaço Mountains were selected for study in the first survey of galling organisms in such tropical vegetation. Investigators found 92 distinct gall morphotypes on several organs of 51 host plant species of 19 families. Cecidomyiidae (Diptera) was the most prolific gall-inducing species, responsible for the largest proportion of galls (77%) observed. Leaves were the most frequently galled plant organ (63%), while the most common gall morphotype was of a spherical shape (30%). The two plant species, Baccharis dracunculifolia (Asteraceae) and Celtis brasiliensis (Cannabaceae), presented the highest number of gall morphtypes, displaying an average of 5 gall morphotypes each. This is the first study of gall-inducing arthropods and their host plant species ever undertaken in a Brazilian SDTF ecosystem. Given the intense human pressure on SDTFs, the high richness of galling arthropods, and implied floral host diversity found in this study indicates the need for an increased effort to catalogue the corresponding flora and fauna, observe their intricate associations and further understand the implications of such rich diversity in these stressed and vulnerable ecosystems.
Resumo:
Ant species (Hymenoptera, Formicidae) from the seasonally dry tropical forest of northeastern Brazil: a compilation from field surveys in Bahia and literature records. The Caatingas occur predominantly in northeastern Brazil and comparatively it is the biome that received less attention than any other ecosystem in Brazil, representing the region where invertebrate groups are less known. We present here the first list of ant species of the Caatingas, compiling information from the literature, from a study of samples preserved in alcohol in the Laboratory of Entomology (Universidade Estadual de Feira de Santana), and from a field survey conducted in Milagres, Bahia, submitting standardized 1-m² samples of the leaf-litter to Winkler extractors. Summing all information, 11 subfamilies, 61 genera and 173 species (plus one subspecies) of ants are recognized in the biome. This species number does not consider morphospecies that could not be named due to the lack of reliable recent taxonomic information for some Neotropical ant genera. The list presented here for ant species of the Caatingas is therefore underestimated, but it is relevant because it allows the identification of areas to be sampled in order to improve our knowledge of the diversity of ants in this biome.
Resumo:
Introduction We analyzed the vertical and monthly distributions of culicid species in the gallery forest of Brasília National Park, with an emphasis on the potential vectors of yellow fever (YF). Methods Between September 2010 and August 2011, mosquitoes were captured on the ground and in the canopy of the forest for five consecutive days per month, from nine to 15 hours. The mosquitoes were examined to verify natural infection with flaviviruses by isolation in Aedes albopictus Skuse, 1864 cells followed by indirect immunofluorescence. Results We identified 2,677 culicids distributed in 29 species. Most of the mosquitoes were captured at ground level (69%) during the rainy season (86%). The most abundant species were Sabethes (Sabethes) albiprivus Theobald, 1903; Limatus durhamii Theobald, 1901; Haemagogus (Conopostegus) leucocelaenus Dyar & Shannon, 1924; Haemagogus (Haemagogus) janthinomys Dyar, 1921; Aedes (Ochlerotatus) scapularis Rondani, 1848; Psorophora (Janthinosoma) ferox Von Humboldt, 1819; and Aedes (Ochlerotatus) serratus Theobald, 1901. Limatus durhamii, Limatus durhamii, Psorophora ferox, Aedes scapularis and Aedes serratus showed significant differences (p<0.05) in their habitat use. Limatus durhamii was found more often in the canopy, unlike the other species. During the rainy season, the most abundant species were Sa. albiprivus, Haemagogus leucocelaenus and Limatus durhamii. During the dry season, the potential YF vectors exhibited a very low frequency and abundance, except Aedes scapularis and Aedes serratus. No flavivirus was detected in the 2,677 examined mosquitoes. Conclusions We recommend continued and systematic entomological monitoring in areas vulnerable to the transmission of YF in the Federal District of Brazil.
Resumo:
Field measurement programs in Brazil during the dry season months of August and September in 1979 and 1980 have demonstrated the great importance of the continental tropics in global air chemistry. Especially in the mixed layer, the air composition over land is much different from that over the ocean and the land areas are clearly longe scale sources of many inportant trace gases. During the dry season much biomass, burning takes place especially in the cerrado regions leading to substantial emission of air pollutants, such as CO, NOx, N2O, CH4 and other hydrocarbons. Ozone concentrations are alsoenhanced due to photochemical reactions. Biogenic organic emissions from tropical forests play likewise an important role in the photochemistry of the atmosphere. Carbon monoxide was found to be present in high concentrations in the boundary layer of the tropical forest, but ozone concentrations were much lower than in the cerrado.
Resumo:
There are few assessments of lifetime dry matter production for tropical trees. However, several studies, have been carried out for palms. This study measures dry matter production for Jessenia bataua,a useful palm common in many areas of the Amazon Valley. Palms In the Ducke Forest Reserve Of INPA were studied. Approximately 34% of total aboveground dry matter production in this palm was, alllocated to reproductive effort, eg., the production of in florescences and fruits. The meaning of this percentage, to discussed, relative to percentages identified in other Neotropical palms.
Resumo:
The purpose of this study is to analyse the climatic aspects of the data collected in a forest site in comparison with conventional data obtained at different sites, such as clearing, rural an urban areas. The results showed that diverse climatic conditions do exist among the sites: the urban site showed higher temperature and lower relative humidity. In addition, evapotranspiration (potential and actual rates) was computed from the forest data set, using the classical Penman-Monteith's equation. The actual evapotranspiration is 30% of the potential value during dry period and seems to be almost constant during the whole year (tipically 2.0 to 2.5 mm day-1).
Resumo:
The species composition of the seasonal várzea forest growing on a bank of the Ilha de Marchantaria / lower Solimões-Amazonas River, Brazil was studied in an area of slightly less than one hectare. Two biomass plots were harvested. Forty-seven arboreal species representing 46 genera in 25 families were recorded. Tree density was 1086 per hectare. Total basal area was 45 m2 ha1. Mean species density was 6.5 ± 1.98 per 100 m2. The most abundant species were Crataeva benthamii(Capparidaceae), Laetia corymbutosa(Flacourtiaceae) and Vitex cymosa(Verbenaceae). The highest basal area per species was 10.2 m2 for Pseudobombax munguba(Bombacaceae). The common species are known to be typical floristic elements of the seasonal varzea forest. Above ground dry biomass was equal to 97 and 255 t ha', respectively. Its chemical composition is characterized by comparatively high bioelement contents equal to 2.4 percent on the average. Calcium was the most important bioelement. Structure of the forest and age darings of trees allow the successional classification of the stands.
Resumo:
Várzea and terra-firme forests in the lower course of the Amazon were compared in terms of forest structure, wood volume increments and forest biomass. The wood volume of várzea forests was smaller than that of terra-firme forests, particularly when severe human intervention such as the cultivation of açaí palm occurred. The difference was even greater in the forest weight comparison because of the lower wood density of várzea trees. These trees are not directly influenced by water stress during the dry season, while late wood with a high density is formed in the terra-firme trees. The annual forest disappearance area due to firewood for tile factories was estimated to be about 276 ha on the island investigated, which had an area of 36,200 ha. Assuming that the forests are rotatively cultivated every 25 to 30 years, the total deforestation area is 6,870-6,948 ha in 25 years and 8,244~8,337 ha in 30 years. This result means that the balance between forest biomass and utilization is not in crisis, however, this balance might be lost as long as substitutive energy such as electricity is not supplied.
Resumo:
Communal nesting has been registered for a number of lizard species at different sites. Here it is described communal egg laying of Gonatodes humeralis at different sites near and in human buildings in the period between 1990 and 1998. All these communal nests have been found in the dry season, between April and July, suggesting that the nests of are more common in this season, when the activity of their predators is less intense and the reduction of humidity diminish the decomposition action of the fungi that may kill the eggs.
Resumo:
Seasonally dry evergreen forests in southeast Pará, Brazil are transitional between taller closed forests of the interior Amazon Basin and woodland savannas (cerrados) of Brazil's south-central plains. We describe abiotic and biotic gradients in this region near the frontier town of Redenção where forest structure and composition grade subtly across barely undulating topography. Annual precipitation averaged 1859 mm between 1995-2001, with nearly zero rainfall during the dry season months of June August. Annual vertical migrations of deep-soil water caused by seasonal rainfall underlie edaphic and floristic differences between high- and low-ground terrain. Low-ground soils are hydromorphic, shaped by perching water tables during the wet season, pale gray, brown, or white in color, with coarse texture, low moisture retention during the dry season, and relatively high macro-nutrient status in the surface horizons. Forest canopies on low ground are highly irregular, especially along seasonal streams, while overstory community composition differs demonstrably from that on high ground. High-ground soils are dystrophic, well-drained through the wet season, brown or red-yellow in color, with finer texture, higher moisture retention, and low macro-nutrient status in the surface horizons compared to low-ground soils. Forest canopies are, on average, taller, more regular, and more closed on high ground. Low-ground areas can be envisioned as energy and nutrient sinks, where, because of hydrologic cycles, canopy disturbance likely occurs more frequently than at high-ground positions if not necessarily at larger scales.
Resumo:
A preliminary survey of the spider fauna in natural and artificial forest gap formations at Porto Urucu, a petroleum/natural gas production facility in the Urucu river basin, Coari, Amazonas, Brazil is presented. Sampling was conducted both occasionally and using a protocol composed of a suite of techniques: beating trays (32 samples), nocturnal manual samplings (48), sweeping nets (16), Winkler extractors (24), and pitfall traps (120). A total of 4201 spiders, belonging to 43 families and 393 morphospecies, were collected during the dry season, in July, 2003. Excluding the occasional samples, the observed richness was 357 species. In a performance test of seven species richness estimators, the Incidence Based Coverage Estimator (ICE) was the best fit estimator, with 639 estimated species. To evaluate differences in species richness associated with natural and artificial gaps, samples from between the center of the gaps up to 300 meters inside the adjacent forest matrix were compared through the inspection of the confidence intervals of individual-based rarefaction curves for each treatment. The observed species richness was significantly higher in natural gaps combined with adjacent forest than in the artificial gaps combined with adjacent forest. Moreover, a community similarity analysis between the fauna collected under both treatments demonstrated that there were considerable differences in species composition. The significantly higher abundance of Lycosidae in artificial gap forest is explained by the presence of herbaceous vegetation in the gaps themselves. Ctenidae was significantly more abundant in the natural gap forest, probable due to the increase of shelter availability provided by the fallen trees in the gaps themselves. Both families are identified as potential indicators of environmental change related to the establishment or recovery of artificial gaps in the study area.
Resumo:
The objective of this work was to assess the fine-root (≤ 2 mm diameter) production dynamics of two forest regrowths at different ages. Fine-root production was monitored by the ingrowth core method in one 18-year-old site (2 ha) and one 10-year-old site (0.5 ha), both localized in the Apeú region, Northern Pará State, Brazil. The sites were abandoned after successive shifting cultivation, beginning in 1940. Monthly production of live fine-root was similar between sites and was influenced by rainfall seasonality, with higher production during the dry season than the wet season for mass and length. However, mortality in terms of mass was higher in the 10-year-old site than in the 18-year-old site. The seasonality influenced mortality only in the 18-year old site following the pattern observed for live fine-root. The influence seasonal on mortality in terms of length was different between sites, with higher mortality during the wet season in the 10-year-old site and higher mortality during the dry season in the 18-year-old site. Specific root length was higher during the wet season and at the 10-year-old site. Fine-root production was not influenced by the chronosequence of the sites studied, probably fine-root production may have already stabilized in the sites or it depended more on climate and soil conditions. The production of fine-roots mass and length were indicators that generally showed the same pattern.
Resumo:
Coupled carbon/climate models are predicting changes in Amazon carbon and water cycles for the near future, with conversion of forest into savanna-like vegetation. However, empirical data to support these models are still scarce for Amazon. Facing this scenario, we investigated whether conservation status and changes in rainfall regime have influenced the forest-savanna mosaic over 20 years, from 1986 to 2006, in a transitional area in Northern Amazonia. By applying a spectral linear mixture model to a Landsat-5-TM time series, we identified protected savanna enclaves within a strictly protected nature reserve (Maracá Ecological Station - MES) and non-protected forest islands at its outskirts and compared their areas among 1986/1994/2006. The protected savanna enclaves decreased 26% in the 20-years period at an average rate of 0.131 ha year-1, with a greater reduction rate observed during times of higher precipitation, whereas the non-protected forest islands remained stable throughout the period of study, balancing the encroachment of forests into the savanna during humid periods and savannization during reduced rainfall periods. Thus, keeping favorable climate conditions, the MES conservation status would continue to favor the forest encroachment upon savanna, while the non-protected outskirt areas would remain resilient to disturbance regimes. However, if the increases in the frequency of dry periods predicted by climate models for this region are confirmed, future changes in extension and directions of forest limits will be affected, disrupting ecological services as carbon storage and the maintenance of local biodiversity.